MEEMD--改进的EEMD算法及其应用研究

        总体平均经验模态分解(EEMD)虽然在一定程度上抑制了模态混淆现象,但是其计算量较大,添加的白噪声不能被完全中和。湖南大学的程军圣等人提出了改进的EEMD(MEEMD)。实验结果证明,MEEMD不仅能够抑制EMD分解过程中的模态混淆问题,而且缩小了工作量、减少了重构误差。

相关文献:[1]郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击, 2013(21):21-26.


MATLAB

function modes=meemd(x,Nstd,Ne,MAXmodes,m,tao,theta0)
%----------------------------------------------------------------------
%   INPUTs
%   x: signal to decompose
%   Nstd: noise standard deviation
%   Ne: number of realizations
%   MaxIter: maximum number of sifting iterations allowed.
%  OUTPUTs
%  modes: contain the obtained modes in a matrix with the rows being the modes        
% -------------------------------------------------------------------------


%% 数量运算标准化
desvio_x=std(x);
x=x/desvio_x;

modes=zeros(size(x));
aux=zeros(MAXmodes+1,size(x,2)); %+1表示最后1行是余项
acum=zeros(size(x));

%%% 生成噪声信号
for i=1:Ne
    white_noise{i}
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值