在预测领域中对原始数据进行分解,可以提高预测精度。分解算法在故障诊断领域也有重要作用。
CEEMDAN
CEEMDAN 算法是由 Torres M E.等人于2011 年提出的一种新型信号分解算法,较好地解决了经验模态分解(EEMD)存在的模态混叠现象。其具体分解过程如下描述:
步骤 1:将待分解信号 x(t) 添加 K 次均值为 0的高斯白噪声,构造共 K 次实验的待分解序列xi(t),其中i=1,2,3....,k.。
式中:为高斯白噪声权值系数;
it 为第 i 次处理时产生的高斯白噪声。
步骤 2:对上述序列 xi(t) 进行 EMD 分解,分解得到第 1 个模态分量(IMF)并取其均值作为CEEMDAN 分解得到的第 1 个 IMF。