ICEEMDAN/CEEMDAN:改进的/完全自适应噪声集合经验模态分解(matlab)

在预测领域中对原始数据进行分解,可以提高预测精度。分解算法在故障诊断领域也有重要作用。


CEEMDAN

CEEMDAN 算法是由 Torres M E.等人于2011 年提出的一种新型信号分解算法,较好地解决了经验模态分解(EEMD)存在的模态混叠现象。其具体分解过程如下描述:\displaystyle

步骤 1:将待分解信号 x(t) 添加 K 次均值为 0的高斯白噪声,构造共 K 次实验的待分解序列xi(t),其中i=1,2,3....,k.。

 式中:\varepsilon为高斯白噪声权值系数; \deltait 为第 i 次处理时产生的高斯白噪声。

步骤 2:对上述序列 xi(t) 进行 EMD 分解,分解得到第 1 个模态分量(IMF)并取其均值作为CEEMDAN 分解得到的第 1 个 IMF。 

  

评论 89
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值