task03

该博客介绍了数据重构的过程,包括使用Pandas库进行数据合并。作者通过读取多个CSV文件并将它们横向和纵向合并,创建了新的数据集。此外,还展示了如何将数据转换为Series类型,以及利用GroupBy机制进行数据分组,计算平均票价、存活人数等统计信息。博客还探讨了不同性别、年龄和船舱等级的存活率和票价,强调了数据分析在理解数据模式和提取洞察力中的作用。
摘要由CSDN通过智能技术生成

第五章 数据重构

1 数据的合并

导入基本库

import numpy as np
import pandas as pd

载入data文件中的:train-left-up.csv

text = pd.read_csv('C:\Users\Dell\Desktop\动手学数据分析\第二章项目集合\data/train-left-up.csv')
text.head()

1.1 任务一:将data文件夹里面的所有数据都载入,与之前的原始数据相比,观察他们的之间的关系

text_left_up = pd.read_csv("data/train-left-up.csv")
text_left_down = pd.read_csv("data/train-left-down.csv")
text_right_up = pd.read_csv("data/train-right-up.csv")
text_right_down = pd.read_csv("data/train-right-down.csv")
text_left_up
text_left_down
text_right_up
text_right_down

1.2任务二:使用concat方法:将数据train-left-up.csv和train-right-up.csv横向合并为一张表,并保存这张表为result_up

list_up = [text_left_up,text_right_up]
result_up = pd.concat(list_up,axis=1)
result_up.head()

1.3 任务三:使用concat方法:将train-left-down和train-right-down横向合并为一张表,并保存这张表为result_down。然后将上边的result_up和result_down纵向合并为result。

list_down=[text_left_down,text_right_down]
result_down = pd.concat(list_down,axis=1)
result = pd.concat([result_up,result_down])
result.head()

1.4 任务四:使用DataFrame自带的方法join方法和append:完成任务二和任务三的任务

resul_up = text_left_up.join(text_right_up)
result_down = text_left_down.join(text_right_down)
result = result_up.append(result_down)
result.head()

1.5 任务五:使用Panads的merge方法和DataFrame的append方法:完成任务二和任务三的任务

result_up = pd.merge(text_left_up,text_right_up,left_index=True,right_index=True)
result_down = pd.merge(text_left_down,text_right_down,left_index=True,right_index=True)
result = resul_up.append(result_down)
result.head()

1.6 任务六:完成的数据保存为result.csv

result.to_csv('result.csv')

2 换一种角度看数据

2.1 任务一:将我们的数据变为Series类型的数据

text = pd.read_csv('result.csv')
text.head()
unit_result=text.stack().head(20)
unit_result.head()
unit_result.to_csv('unit_result.csv')
test = pd.read_csv('unit_result.csv')
test.head()

3 数据运用

导入基本库并载入数据

import numpy as np
import pandas as pd
text = pd.read_csv('result.csv')
text.head()

3.1 任务一:通过《Python for Data Analysis》P303、Google or Baidu来学习了解GroupBy机制
Groupby机制:分割,应用和组合
3.2:任务二:计算泰坦尼克号男性与女性的平均票价(运用Groupby机制)

df  = text['Fare'].groupby(text['Sex'])
means = df.mean()
means

3.3:任务三:统计泰坦尼克号中男女的存活人数

survived_sex = text['Survived'].groupby(text['Sex']).sum()
survived_sex.head()

3.4 任务四:计算客舱不同等级的存活人数

survived_sex = text['Survived'].groupby(text['Sex']).sum()
survived_sex.head()

3.5 任务五:统计在不同等级的票中的不同年龄的船票花费的平均值

text.groupby(['Pclass','Age'])['Fare'].mean().head()

3.6 任务六:将任务二和任务三的数据合并,并保存到sex_fare_survived.csv

result = pd.merge(means,survived_sex,on='Sex')
result
result.to_csv('sex_fare_survived.csv')

3.7 任务七:得出不同年龄的总的存活人数,然后找出存活人数的最高的年龄,最后计算存活人数最高的存活率(存活人数/总人数)

#不同年龄的存活人数
survived_age = text['Survived'].groupby(text['Age']).sum()
survived_age.head()
#找出最大值的年龄段
survived_age[survived_age.values==survived_age.max()]
#不同年龄的存活人数
_sum = text['Survived'].sum()
print(_sum)
#首先计算总人数
_sum = text['Survived'].sum()

print("sum of person:"+str(_sum))

precetn =survived_age.max()/_sum

print("最大存活率:"+str(precetn))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值