Hands-on data analysis
文章目录
第一章:数据加载
1 载入数据
数据集下载 [https://www.kaggle.com/c/titanic/overview]
1.1 任务一:导入numpy和pandas
import numpy as np
import pandas as pd
1.2 任务二:载入数据
(1) 使用相对路径载入数据
pd.read_csv('train.csv')
(2) 使用绝对路径载入数据
os.path.abspath('train.csv')
1.3 任务三:每1000行为一个数据模块,逐块读取
chunker = pd.read_csv("train.csv",chunksize=1000)
for i in chunker:
print(i)
1.4 任务四:将表头改成中文,索引改为乘客ID
df=pd.read_csv('train.csv')
df.columns=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口']
df.head()
2 初步观察
2.1 任务一:查看数据的基本信息
df.info()
2.2 任务二:观察表格前10行的数据和后15行的数据
df.head(10)
df.tail(15)
2.3 任务三:判断数据是否为空,为空的地方返回True,其余地方返回False
df.isnull().head()
3 保存数据
3.1 任务一:将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv
df.to_csv('train_chinese.csv')
第二章:pandas基础
1 知道你的数据叫什么
1.1任务一:pandas中有两个数据类型DateFrame和Series,通过查找简单了解他们。然后自己写一个关于这两个数据类型的小例子
import numpy as np
import pandas as pd
import os
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
example_1 = pd.Series(sdata)
example_1
data = {'x': ['1', '3', '5', '7'], 'y': [1,3,5,7],'z': ['mango','banana','orange','apple']}
example_2 = pd.DataFrame(data)
example_2
1.2 任务二:根据上节课的方法载入"train.csv"文件
df=pd.read_csv('train.csv')
path=os.path.abspath('train.csv')
1.3 任务三:查看DataFrame数据的每列的名称
df.columns
1.4 任务四:查看"Cabin"这列的所有值
#方法一
df['Cabin'].head(3)
#方法二
df.Cabin.head(3)
1.5任务五:加载文件"test_1.csv",然后对比"train.csv",看看有哪些多出的列,然后将多出的列删除
test_1 = pd.read_csv('test_1.csv')
test_1.head(3)
# 删除多余的列
del test_1['a']
test_1.head(3)
1.6 任务六: 将[‘PassengerId’,‘Name’,‘Age’,‘Ticket’]这几个列元素隐藏,只观察其他几个列元素
df.drop(['PassengerId','Name','Age','Ticket'],axis=1).head(3)
2 筛选的逻辑
2.1任务一: 我们以"Age"为筛选条件,显示年龄在10岁以下的乘客信息。
df[df["Age"]<10].head(3)
2.2 任务二: 以"Age"为条件,将年龄在10岁以上和50岁以下的乘客信息显示出来,并将这个数据命名为midage
midage = df[(df["Age"]>10)& (df["Age"]<50)]
midage.head(3)
2.3 任务三:将midage的数据中第100行的"Pclass"和"Sex"的数据显示出来
midage = midage.reset_index(drop=True)
midage.head(3)
2.4 任务四:使用loc方法将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来
midage.loc[[100,105,108],['Pclass','Name','Sex']]
2.5 任务五:使用iloc方法将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来
midage.iloc[[100,105,108],[2,3,4]]
第三章:探索性数据分析
1 了解你的数据吗?
开始之前,导入numpy、pandas包和数据
#加载所需的库
import numpy as np
import pandas as pd
#载入之前保存的train_chinese.csv数据
text = pd.read_csv('train_chinese.csv')
text.head()
1.1任务一:利用Pandas对示例数据进行排序,要求升序
#自己构建一个都为数字的DataFrame数据
frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
index=['2', '1'],
columns=['d', 'a', 'b', 'c'])
frame
# 根据构建的DataFrame中的数据某一列升序排列
frame.sort_values(by='c', ascending=True)
1.2 任务二:对泰坦尼克号数据(trian.csv)按票价和年龄两列进行综合排序(降序排列)
text.sort_values(by=['票价', '年龄'], ascending=False).head(3)
1.3 任务三:利用Pandas进行算术计算,计算两个DataFrame数据相加结果
frame1_a = pd.DataFrame(np.arange(9.).reshape(3, 3),
columns=['a', 'b', 'c'],
index=['one', 'two', 'three'])
frame1_b = pd.DataFrame(np.arange(12.).reshape(4, 3),
columns=['a', 'e', 'c'],
index=['first', 'one', 'two', 'second'])
frame1_a
frame1_b
frame1_a + frame1_b
1.4 任务四:通过泰坦尼克号数据如何计算出在船上最大的家族有多少人?
max(text['兄弟姐妹个数'] + text['父母子女个数'])
1.5 任务五:学会使用Pandas describe()函数查看数据基本统计信息
frame2 = pd.DataFrame([[1.4, np.nan],
[7.1, -4.5],
[np.nan, np.nan],
[0.75, -1.3]
], index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
frame2
frame2.describe()
1.6 任务六:分别看看泰坦尼克号数据集中 票价、父母子女 这列数据的基本统计数据,你能发现什么?
#看看泰坦尼克号数据集中 票价这列数据的基本统计数据
text['票价'].describe()
#通过上面的例子,我们再看看泰坦尼克号数据集中 父母子女个数 这列数据的基本统计数据,然后可以说出你的想法
text['父母子女个数'].describe()
【总结】本节中我们通过Pandas的一些内置函数对数据进行了初步统计查看,这个过程最重要的不是大家得掌握这些函数,而是看懂从这些函数出来的数据,构建自己的数据分析思维,这也是第一章最重要的点,希望大家学完第一章能对数据有个基本认识,了解自己在做什么,为什么这么做,后面的章节我们将开始对数据进行清洗,进一步分析。