前言
趁着电脑跑代码之余,写一些读书心得。本文是对C. Pan的文章[Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces]的读书笔记,本文章选自智能超表面(RIS)相关文章的引用前50。文章中涉及的处理RIS相关优化问题的方法非常实用且经典,而且是对WMMSE算法优化加权和速率(WSR)的一个非常具体的例子。
系统模型
本文是RIS辅助多小区MIMO的开篇文章,其系统模型的复杂部分就在于对于Multicell的建模和处理,从示意图我们不难看出,每个小区的基站(BS)不仅仅服务于本小区的边缘用户,且会对其他小区的用户发送信息,显然这并不是其他小区的用户想要收到的,这就形成了小区间干扰。这种干扰在小区的交界处尤为强烈。此外在同一小区内,基站向用户A发送的信息同样不可避免的会传给用户B,这形成了小区内干扰。相比之下,对于边缘用户而言,小区间干扰的程度要大的多。因此如何抑制这两种干扰,提升服务质量(QoS)就成了一个亟待解决的问题。本论文利用了6G研究重点技术之一,智能超表面RIS。
其接收信号的模型为:
这里涉及了最基础的RIS信道建模,即用对角阵
Φ
\Phi
Φ表示RIS的相移矩阵。此外这里的一些信道的表示是特别容易混淆和产生歧义的。首先
H
n
,
l
,
k
H_{n,l,k}
Hn,l,k表示第n个小区的基站到第l个小区的第k个用户的信道,
H
l
,
k
r
H_{l,k}^r
Hl,kr是RIS到第l个小区的第k个用户的信道,
G
n
r
G_{n}^r
Gnr是第n个小区的基站到RIS的信道。这里的下标一定要明确,后面涉及到优化的时候是会变的,但只要对齐对应下标就好。因此级联信道为:
本文的目标函数是加权和速率,这是一个能直接反映QoS的量,优化变量为基站段的主动波束赋形和RIS的相移矩阵(RIS的被动波束赋形),其函数为
这里的J是干扰和噪声的协方差矩阵,和速率R的定义是MIMO理论的基础知识,这里不再赘述。因此优化问题为
其中的约束包括发射功率小于某值,以及相移的单位模约束。从这里我们不难看出,(5a)的形式是特别难求解的,首先它是一个分式的形式,且F和
Φ
\Phi
Φ呈现乘性耦合。此外,单位模约束就决定了整个问题是一个非凸的优化问题。
为了处理该问题,作者使用了WMMSE算法,通过引入两个辅助变量将WSR变成一个相对简单的形式(对F是凸的,且辅助变量有闭式解),这是一个WMMSE算法特别有效的例子。不懂WMMSE算法的读者可以参考论文 An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel 以及推文加权最小均方误差(weighted minimum mean square error, WMMSE)算法及Python实现。简而言之,对解码后接收信号的MMSE函数与WSR函数存在联系,两者其实是等效的,可以相互转化,具体如下
这是一件十分神奇的事情,但事实确实如此,作者在第一次读到以上文章的时候也非常惊奇,这也许就是通信结合数学推导的魅力。OK,闲言少叙,我们可以发现W和U是我们人工引入的变量,其中U是解码矩阵,W是辅助矩阵,WMMSE算法通过增加变量的方法降低了函数的复杂度。其中E为接收信号的MSE,如下
显然根据凸优化理论,W和U的最优解是可以直接求得的,只需要导数为0即可,得到最优的U和W
这里的推导可以手搓一下,还是很简单的。接下来就是优化F和
Φ
\Phi
Φ了,这里用了RIS非凸优化的经典算法BCD,即块坐标下降法,或者更经典的叫法—交替优化,通过分别固定其他变量,单独优化某个变量,依次循环直到收敛。
优化方法
优化主动波束赋形F
其实利用WMMSE算法简化后的WSR对于F同样是凸的,因此许多凸优化算法都可以应用,matlab的CVX工具箱即可实现,但是在这部分作者的推导是值得看一下的
以上将无关项准确合并,着重突出待优化变量的能力是我们平时在科研中十分重要的,这里的推导主要是将E打开,然后合并无关项,有兴趣的可以手搓一下练练手。至此问题(13a)显然是一个SOCP问题,解决方法非常多,且复杂度大差不差,这里就不介绍作者的做法了。
优化RIS的相移矩阵 Φ \Phi Φ
至于对相移矩阵的优化,由于单位模的约束,是一个非凸问题,但相关的优化方法已经十分成熟了,著名的有半正定松弛SDR(但复杂度较高),复圆流形优化(CCM),交替方向乘子(ADMM),逐次凸逼近(SCA/MM)算法等。这里作者利用了CCM和MM算法两种。
首先同样合并无关项,并利用向量和矩阵的哈达玛积性质将目标函数化简为
具体的推导过程是十分繁琐的,但是原理很简单,但读者在读论文时可以注意这个部分
在RIS的研究学习中,克劳内克积和哈达玛积是十分常用的,充分了解其性质和应用场合是十分必要的,不明白的读者可以自行搜索一下,或者参考矩阵论的内容学习。
问题(35a)的形式,做RIS相关方向的读者应该非常熟悉,这是一个经典的优化相移的目标函数,接下来简单介绍作者的两种做法。
复圆流形优化CCM
单位模约束的存在导致我们无法在欧氏空间进行梯度下降,因为约束本身非凸,我们无法在欧氏空间进行投影,但单位模在复空间表示一个单位球, 因此可以投影到黎曼空间构成一个流形,其中流形是指局部类似于欧几里得空间的拓扑空间。在复圆流形优化中,算法会在每一步迭代中考虑流形的几何结构,确保迭代点始终位于流形上。对这里不懂的读者可以去搜索有关内容。黎曼空间的梯度和欧氏空间的梯度一样是可以计算的,且黎曼梯度是基于欧式梯度的投影,因此CCM本质上还是一个投影后的梯度下降算法。matlab有专门的工具包 Manopt toolbox以解决流形优化问题。
Majorization-Minimization (MM)
Majorization-Minimization (MM) 算法是一种用于求解优化问题的迭代算法,特别适用于目标函数复杂或非凸的情况。MM算法的核心思想是通过构造一个替代函数(majorizing function)来简化原始优化问题,并在每一步迭代中最小化这个替代函数,从而逐步逼近原始问题的最优解。其原理很类似高中学的夹逼定理(这个比喻不准确,但可以帮助理解)。
MM算法的基本步骤
Majorization(构造替代函数):
在每次迭代中,构造一个替代函数 ,替代函数通常比原始目标函数更简单,便于优化。且代替函数要求满足1)替代函数在全局上位于目标函数之上;2)在当前点替代函数与目标函数值相等
Minimization(最小化替代函数):
在每次迭代中,通过最小化替代函数,来更新变量,由于替代函数是目标函数的上界,最小化替代函数可以保证目标函数的值不会增加。
算法
至此所有项的优化均完成,我们只需要控制其他,单独优化某变量,依次循环直至收敛即可,这种BCD算法在通信领域是十分常用的,一定要理解。最后附上一张算法伪代码
总结
本文研究了多小区RIS辅助的MIMO通信系统,主要应用了WMMSE和BCD算法。RIS的引入的确有效地增大了和速率,降低了用户间和小区间的干扰,其中涉及的方法和推导是十分值得学习的。另外作者在最后给出了Future Work的展望,包括Network形式的MIMO和多个RIS辅助的场景。这篇文章的建模是RIS相关场景相对复杂的,因为信道数量众多,把握该文章可以对RIS相关研究有一个不错的掌握,推荐阅读。
PS:都写完了代码还没跑出来,发现原来有个数组的维度错了,导致循环一直空转,祝大家别遇到这种情况吧hhhh