子空间的直和

定义

W 1 W_1 W1 W 2 W_2 W2是线性空间 V V V的两个子空间,如果 W 1 ∩ W 2 = { θ } W_1\cap W_2=\{\theta\} W1W2={θ},则称 W 1 + W 2 W_1+W_2 W1+W2为子空间 W 1 W_1 W1 W 2 W_2 W2的直和,记为 W 1 ⊕ W 2 W_1\oplus W_2 W1W2

W 1 , W 2 , ⋯   , W s W_1,W_2,\cdots,W_s W1,W2,,Ws是线性空间 V V V s s s个子空间,如果和 W 1 + W 2 + ⋯ + W S W_1+W_2+\cdots+W_S W1+W2++WS中每个向量 α \alpha α的分解式
α = α 1 + α 2 + ⋯ + α s , α i ∈ W i ( i = 1 , 2 , ⋯   , s ) \alpha=\alpha_1+\alpha_2+\cdots+\alpha_s,\alpha_i\in W_i(i=1,2,\cdots,s) α=α1+α2++αs,αiWi(i=1,2,,s)
是唯一的,称这个和是直和,计作 W 1 ⊕ W 2 ⊕ ⋯ ⊕ W S W_1 \oplus W_2 \oplus\cdots \oplus W_S W1W2WS.

等价条件
W 1 , W 2 , ⋯   , W s W_1,W_2,\cdots,W_s W1,W2,,Ws V V V的s个子空间,以下条件等价:
(1) W 1 + W 2 + ⋯ + W s W_1+W_2+\cdots+W_s W1+W2++Ws是直和;
(2)零向量的表示法唯一;
(3) W i ∩ ( ∑ j ≠ i W j ) = θ , i = 1 , 2 , ⋯   , s ; W_i\cap(\sum\limits_{j\ne i}W_j)={\theta},i=1,2,\cdots,s; Wi(j=iWj)=θ,i=1,2,,s;
(4) dim ⁡ ( W 1 + W 2 + ⋯ + W s ) = ∑ i = 1 s dim ⁡ W i . \dim(W_1+W_2+\cdots+W_s)=\sum\limits_{i=1}^s \dim W_i. dim(W1+W2++Ws)=i=1sdimWi.

定理

W 1 W_1 W1是线性空间 V V V的子空间,则必存在 V V V的子空间 W 2 W_2 W2使
V = W 1 ⊕ W 2 V=W_1\oplus W_2 V=W1W2.

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值