1.6 子空间直和

子空间直和

假设基任意分为两个互补的无关组,例如 V 1 = ( v 1 , ⋯   , v k ) V_1 = (\mathbf{v_1},\cdots,\mathbf{v_k}) V1=(v1,,vk) V 2 = ( v k + 1 , ⋯   , v m ) V_2 = (\mathbf{v_{k+1}},\cdots,\mathbf{v_m}) V2=(vk+1,,vm) k ≥ 1 且 k < m k \ge 1 \quad 且\quad k < m k1k<m ,这两个无关组张成子空间, S 1 ( V 1 ) S_1(V_1) S1(V1) S 2 ( V 2 ) S_2(V_2) S2(V2) ,有什么关系呢?

首先两个子空间维度为 d i m S 1 = k dim S_1 = k dimS1=k d i m S 2 = m − k dim S_2 = m-k dimS2=mk ,维度和等于空间维度 m m m

其次如果向量 v \mathbf{v} v 同时属于这两个子空间,则必为 0 \mathbf{0} 0 向量。

证:因为 v ∈ S 1 \mathbf{v} \in S_1 vS1 ,则 v = α 1 v 1 + ⋯ + α k v k \mathbf{v} = \alpha_1\mathbf{v_1} + \cdots + \alpha_k\mathbf{v_k} v=α1v1++αkvk ;因为 v ∈ S 2 \mathbf{v} \in S_2 vS2 ,则 v = α k + 1 v k + 1 + ⋯ + α m v m \mathbf{v} = \alpha_{k+1}\mathbf{v_{k+1}} + \cdots + \alpha_m\mathbf{v_m} v=αk+1vk+1++αmvm 。假设 v \mathbf{v} v 不等于 0 \mathbf{0} 0 向量,则 α 1 v 1 + ⋯ + α k v k = α k + 1 v k + 1 + ⋯ + α m v m \alpha_1\mathbf{v_1} + \cdots + \alpha_k\mathbf{v_k} = \alpha_{k+1}\mathbf{v_{k+1}} + \cdots + \alpha_m\mathbf{v_m} α1v1++αkvk=αk+1vk+1++αmvm ,得 0 = ( α 1 v 1 + ⋯ + α k v k ) − ( α k + 1 v k + 1 + ⋯ + α m v m ) \mathbf{0} = (\alpha_1\mathbf{v_1} + \cdots + \alpha_k\mathbf{v_k}) - (\alpha_{k+1}\mathbf{v_{k+1}} + \cdots + \alpha_m\mathbf{v_m}) 0=(α1v1++αkvk)(αk+1vk+1++αmvm) ,表明 0 \mathbf{0} 0 向量能被基表示且表示系数不全0,与 0 \mathbf{0} 0 向量被基表示时系数为全0 矛盾!

这表明两个子空间仅在原点相交!

最后,若 v ∈ S 1 \mathbf{v} \in S_1 vS1 w ∈ S 2 \mathbf{w} \in S_2 wS2 ,则向量 v + w \mathbf{v} + \mathbf{w} v+w 构成整个空间。

证:因为 v ∈ S 1 \mathbf{v} \in S_1 vS1 ,则 v = α 1 v 1 + ⋯ + α k v k \mathbf{v} = \alpha_1\mathbf{v_1} + \cdots + \alpha_k\mathbf{v_k} v=α1v1++αkvk ;因为 w ∈ S 2 \mathbf{w} \in S_2 wS2 ,则 w = α k + 1 v k + 1 + ⋯ + α m v m \mathbf{w} = \alpha_{k+1}\mathbf{v_{k+1}} + \cdots + \alpha_m\mathbf{v_m} w=αk+1vk+1++αmvm

所以 v + w = ( α 1 v 1 + ⋯ + α k v k ) + ( α k + 1 v k + 1 + ⋯ + α m v m ) \mathbf{v} + \mathbf{w} = (\alpha_1\mathbf{v_1} + \cdots + \alpha_k\mathbf{v_k}) + (\alpha_{k+1}\mathbf{v_{k+1}} + \cdots + \alpha_m\mathbf{v_m}) v+w=(α1v1++αkvk)+(αk+1vk+1++αmvm) 。这显然就是基的线性组合,能表示整个空间!

根据上面结论,定义几个概念。

定义 子空间和 S 1 S_1 S1 S 2 S_2 S2 是子空间,其和为向量集合 S S S ,具有如下性质:如果 v ∈ S 1 \mathbf{v} \in S_1 vS1 w ∈ S 2 \mathbf{w} \in S_2 wS2 ,则 v + w ∈ S \mathbf{v} + \mathbf{w} \in S v+wS ,记为 S = S 1 + S 2 S = S_1 + S_2 S=S1+S2

理解难点在于,子空间和是两个集合的和,不是集合的并,集合并是集合元素聚合在一起,子空间和是向量相加,是加法,不是聚合!

三维空间中,两个子空间分别为一条直线,则空间和为两直线构成的空间(一般是平面)。如两个子空间分别为一条直线和一平面,则空间和为直线和平面构成的空间。如两个子空间分别为一个平面,则空间和为两平面构成的空间。

定义 子空间直和 S 1 S_1 S1 S 2 S_2 S2 是子空间,两空间仅在原点相交,其和 S S S 为直和,记为 S = S 1 ⊕ S 2 S = S_1 \oplus S_2 S=S1S2

三维空间中,比如两个子空间分别为一条直线,如两条直线不重合,则仅在原点相交,为直和。如两个子空间分别为一条直线和一平面,如直线不位于平面内,则仅在原点相交,为直和。如两个子空间分别为一个平面,两个平面必相交于直线,不是直和。
重要性质 直和的几何图像是,空间中任意向量分解为子空间向量和时,只有唯一分解。
空间 S S S 中向量 v \mathbf{v} v 分解为子空间 S 1 S_1 S1 的向量 v 1 \mathbf{v_1} v1 与子空间 S 2 S_2 S2 的向量 v 2 \mathbf{v_2} v2 和时,即 v = v 1 + v 2 \mathbf{v} = \mathbf{v_1} + \mathbf{v_2} v=v1+v2 ,则 v 1 \mathbf{v_1} v1 v 2 \mathbf{v_2} v2 是唯一的。根据无关组表示任意向量的唯一性易得该性质。

空间分解为直和的好处是,各个子空间独立,因为它们只在原点相交,可以分开单独处理。

重要性质 基的两个互补子集张成的子空间,和是直和。

该性质可以推广到任意无关组,不一定要基。

重要性质 无关组的两个互补子集张成的子空间,和是直和。

重要性质 如果 S = S 1 ⊕ S 2 S = S_1 \oplus S_2 S=S1S2 ,则 d i m S = d i m S 1 + d i m S 2 dim S = dim S_1 + dim S_2 dimS=dimS1+dimS2 ,反之亦然。

根据任意无关组可扩充为基的性质,得

重要性质 空间 S 1 S_1 S1 S S S 子空间,则必存在子空间 S 2 S_2 S2 使得 S = S 1 ⊕ S 2 S = S_1 \oplus S_2 S=S1S2 ,称 S 2 S_2 S2 S 1 S_1 S1 的补子空间。

任意空间 S S S 分解为两个子空间的直和,子空间又可以进一步直和分解,直到所有子空间维度均为 1 1 1,总共分解为 d i m S dim S dimS 个一维子空间。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值