目录
一、将彩色图像文件转换为灰度文件
灰度图:
任何颜色都有红、绿、蓝三原色组成,假如原来某点的颜色为RGB(R,G,B),那么,我们可以通过下面几种方法,将其转换为灰度:
1.浮点算法:Gray=R0.3+G0.59+B0.11
2.整数方法:Gray=(R30+G59+B11)/100
3.移位方法:Gray =(R76+G151+B*28)>>8;
4.平均值法:Gray=(R+G+B)/3;
5.仅取绿色:Gray=G;
通过上述任一种方法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统一用Gray替换,形成新的颜色RGB(Gray,Gray,Gray),用它替换原来的RGB(R,G,B)就是灰度图了
1.使用opencv
import cv2 as cv
# 路径为英文
image = cv.imread('lena.jpg')
# 将图片转为灰度图
gray_image = cv.cvtColor(image,code=cv.COLOR_BGR2GRAY)
# 显示图片
cv.imshow('image',gray_image)
# 等待键盘输入,单位是毫秒,0表示无限等待
cv.waitKey(0)
# 因为最终调用的是C++对象,所以使用完要释放内存
cv.destroyAllWindows()
2.不使用opencv
from PIL import Image
I = Image.open('lena.jpg')
L = I.convert('L')
L.show()
二、将彩色图像转化为HSV、HSI 格式
1.HSV
HSV:HSV(hue,saturation,value)颜色空间的模型对应于圆柱坐标系中的一个圆锥形子集,圆锥的顶面对应于V=1. 它包含RGB模型中的R=1,G=1,B=1 三个面,所代表的颜色较亮。色彩H由绕V轴的旋转角给定。红色对应于 角度0° ,绿色对应于角度120°,蓝色对应于角度240°。在HSV颜色模型中,每一种颜色和它的补色相差180° 。 饱和度S取值从0到1,所以圆锥顶面的半径为1。HSV颜色模型所代表的颜色域是CIE色度图的一个子集,这个 模型中饱和度为百分之百的颜色,其纯度一般小于百分之百。在圆锥的顶点(即原点)处,V=0,H和S无定义, 代表黑色。圆锥的顶面中心处S=0,V=1,H无定义,代表白色。从该点到原点代表亮度渐暗的灰色,即具有不同 灰度的灰色。对于这些点,S=0,H的值无定义。可以说,HSV模型中的V轴对应于RGB颜色空间中的主对角线。 在圆锥顶面的圆周上的颜色,V=1,S=1,这种颜色是纯色。HSV模型对应于画家配色的方法。画家用改变色浓和 色深的方法从某种纯色获得不同色调的颜色,在一种纯色中加入白色以改变色浓,加入黑色以改变色深,同时 加入不同比例的白色,黑色即可获得各种不同的色调。
import cv2 as cv
image = cv.imread('lena.jpg')
hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
# 显示图片
cv.imshow('hsv',hsv)
# 等待键盘输入
cv.waitKey(0)
2.HSI
HSI:HSI色彩空间是从人的视觉系统出发,用色调(Hue)、色饱和度(Saturation或Chroma)和亮度 (Intensity或Brightness)来描述色彩。HSI色彩空间可以用一个圆锥空间模型来描述。用这种 描述HIS色彩空间的圆锥模型相当复杂,但确能把色调、亮度和色饱和度的变化情形表现得很清楚。 通常把色调和饱和度通称为色度,用来表示颜色的类别与深浅程度。由于人的视觉对亮度的敏感 程度远强于对颜色浓淡的敏感程度,为了便于色彩处理和识别,人的视觉系统经常采用HSI色彩空间, 它比RGB色彩空间更符合人的视觉特性。在图像处理和计算机视觉中大量算法都可在HSI色彩空间中 方便地使用,它们可以分开处理而且是相互独立的。因此,在HSI色彩空间可以大大简化图像分析 和处理的工作量。HSI色彩空间和RGB色彩空间只是同一物理量的不同表示法,因而它们之间存在着 转换关系。
import cv2
import numpy as np
def rgbtohsi(rgb_lwpImg):
rows = int(rgb_lwpImg.shape[0])
cols = int(rgb_lwpImg.shape[1])
b, g, r = cv2.split(rgb_lwpImg)
# 归一化到[0,1]
b = b / 255.0
g = g / 255.0
r = r / 255.0
hsi_lwpImg = rgb_lwpImg.copy()
H, S, I = cv2.split(hsi_lwpImg)
for i in range(rows):
for j in range(cols):
num = 0.5 * ((r[i, j]-g[i, j])+(r[i, j]-b[i, j]))
den = np.sqrt((r[i, j]-g[i, j])**2+(r[i, j]-b[i, j])*(g[i, j]-b[i, j]))
theta = float(np.arccos(num/den))
if den == 0:
H = 0
elif b[i, j] <= g[i, j]:
H = theta
else:
H = 2