语义分割:标签的每个像素点的值就是这个像素点所属的种类。
如果用标注工具,标注为二值化图片,背景的像素点值为0,目标的像素点值为255。这样的数据集可以正常运行但是预测是没有效果的。
!!!!!!!
需要改成,背景的像素点值为0,目标的像素点值为1。
!!!!!!!
脚本如下:
#--------------------------------------------------------#
# 该文件用于调整标签的格式
#--------------------------------------------------------#
import os
import numpy as np
from PIL import Image
from tqdm import tqdm
#-----------------------------------------------------------------------------------#
# Origin_SegmentationClass_path 原始标签所在的路径
# Out_SegmentationClass_path 输出标签所在的路径
# 处理后的标签为灰度图,如果设置的值太小会看不见具体情况。
#-----------------------------------------------------------------------------------#
# Origin_SegmentationClass_path = "SegmentationClass_Origin"
# Out_SegmentationClass_path = "SegmentationClass"
Origin_SegmentationClass_path = r"E:\SC\PyCharm\UNet_Demo\VOC_data\VOC2007\SegmentationClass"
Out_SegmentationClass_path = r"E:\SC\PyCharm\UNet_Demo\VOC_data\VOC2007\New_SegmentationClass"
#-----------------------------------------------------------------------------------#
# Origin_Point_Value 原始标签对应的像素点值
# Out_Point_Value 输出标签对应的像素点值
# Origin_Point_Value需要与Out_Point_Value一一对应。
# 举例如下,当:
# Origin_Point_Value = np.array([0, 255]);Out_Point_Value = np.array([0, 1])
# 代表将原始标签中值为0的像素点,调整为0,将原始标签中值为255的像素点,调整为1。
#
# 示例中仅调整了两个像素点值,实际上可以更多个,如:
# Origin_Point_Value = np.array([0, 128, 255]);Out_Point_Value = np.array([0, 1, 2])
#
# 也可以是数组(当标签值为RGB像素点时),如
# Origin_Point_Value = np.array([[0, 0, 0], [1, 1, 1]]);Out_Point_Value = np.array([0, 1])
#-----------------------------------------------------------------------------------#
Origin_Point_Value = np.array([0, 255])
Out_Point_Value = np.array([0, 1])
if __name__ == "__main__":
if not os.path.exists(Out_SegmentationClass_path):
os.makedirs(Out_SegmentationClass_path)
#---------------------------#
# 遍历标签并赋值
#---------------------------#
png_names = os.listdir(Origin_SegmentationClass_path)
print("正在遍历全部标签。")
for png_name in tqdm(png_names):
png = Image.open(os.path.join(Origin_SegmentationClass_path, png_name))
w, h = png.size
png = np.array(png)
out_png = np.zeros([h, w])
for i in range(len(Origin_Point_Value)):
mask = png[:, :] == Origin_Point_Value[i]
if len(np.shape(mask)) > 2:
mask = mask.all(-1)
out_png[mask] = Out_Point_Value[i]
out_png = Image.fromarray(np.array(out_png, np.uint8))
out_png.save(os.path.join(Out_SegmentationClass_path, png_name))
#-------------------------------------#
# 统计输出,各个像素点的值得个数
#-------------------------------------#
print("正在统计输出的图片每个像素点的数量。")
classes_nums = np.zeros([256], np.int32)
for png_name in tqdm(png_names):
png_file_name = os.path.join(Out_SegmentationClass_path, png_name)
if not os.path.exists(png_file_name):
raise ValueError("未检测到标签图片%s,请查看具体路径下文件是否存在以及后缀是否为png。"%(png_file_name))
png = np.array(Image.open(png_file_name), np.uint8)
classes_nums += np.bincount(np.reshape(png, [-1]), minlength=256)
print("打印像素点的值与数量。")
print('-' * 37)
print("| %15s | %15s |"%("Key", "Value"))
print('-' * 37)
for i in range(256):
if classes_nums[i] > 0:
print("| %15s | %15s |"%(str(i), str(classes_nums[i])))
print('-' * 37)