【ORB-SLAM2源码梳理5】关于双目帧Frame的构造函数


前言

与单目的Frame构造函数相比,双目的Frame构造函数最大的不同点是:

在构造函数中会进行双目间的特征点的匹配,单目则没有。

其他关键步骤没有太大的区别,但还是有必要专门梳理一遍的。

go、


一、双目图像帧Frame的构造函数

Frame::Frame(const cv::Mat &imLeft,				// 左目图 
			 const cv::Mat &imRight, 			// 右目图
			 const double &timeStamp, 			// 时间戳
			 ORBextractor* extractorLeft, 		// 左目图像特征点提取器的句柄
			 ORBextractor* extractorRight, 		// 右目图像特征点提取器的句柄
			 ORBVocabulary* voc,				// 字典词袋voc 
			 cv::Mat &K, 						// 相机内参矩阵
			 cv::Mat &distCoef, 				// 相机去畸变参数	
			 const float &bf, 					// 相机基线长度与焦距的乘积
			 const float &thDepth)				// 区分远近点的深度阈值
    :mpORBvocabulary(voc),mpORBextractorLeft(extractorLeft),mpORBextractorRight(extractorRight), mTimeStamp(timeStamp), mK(K.clone()),mDistCoef(distCoef.clone()), mbf(bf), mThDepth(thDepth),
     mpReferenceKF(static_cast<KeyFrame*>(NULL))	// 参数初始化列表

step1:图像帧ID自增;

step2:计算图像金字塔参数(从左目的ORB特征点提取器中获取);
注:非要从以右目为主也行,看个人喜好。

step3:对双目图像分别提取ORB特征点,开启双线程进行计算;

step4:去畸变;

step5:计算双目间特征点匹配,并计算匹配成功的特征点其深度

step6:计算去畸变后图像边界;

step7:将特征点分配到网格。

二、计算特征点匹配与成功匹配点对的深度ComputeStereoMatches()

Frame.cc

void Frame::ComputeStereoMatches();

功能:在右目图中,为左目图的每个特征点分别找到匹配点,完成双目两帧图像稀疏立体匹配。

大致流程:

输入:两帧立体矫正匹配后的图像img_leftimg_right对应的ORB特征点集

  1. 行特征点统计:
    统计img_right每行上的ORB特征点集,便于使用立体匹配(行搜索/极限搜索)进行同名点搜索,提升计算速度。
  2. 粗匹配:
    根据步骤1的结果,对img_lefti行的ORB特征点pi,在img_right的第i行上的ORB特征点集中搜索相似的ORB特征点,记对应的匹配点为qi
  3. 精确匹配:
    以点qi为中心,半径为r的范围内,进行块匹配(归一化SAD),进一步优化匹配结果。
  4. 亚像素精度优化:
    步骤3得到的视差为uchar/int类型精度,并不一定是真实视差,通过亚像素插值(抛物线插值)获得float精度的真实视差。
  5. 最优视差值/深度选择:
    通过胜者为王算法(WTA)获取最佳匹配点。
  6. 删除离缺点(outliers):
    块匹配相似度阈值判断,归一化SAD最小并不代表就一定是正确匹配,比如光照变化、弱纹理等会造成误匹配。

输出:亚像素精度的稀疏特征点视差/深度图mvDepth及匹配结果mvuRight

三、具体过程

1. 准备阶段

    mvuRight = vector<float>(N,-1.0f);			// 存储右目图匹配点索引	
    mvDepth = vector<float>(N,-1.0f);			// 存储特征点的深度信息

    const int thOrbDist = (ORBmatcher::TH_HIGH+ORBmatcher::TH_LOW)/2;		// ORB特征点相似度阈值
    const int nRows = mpORBextractorLeft->mvImagePyramid[0].rows;			// 金字塔第0层(原图)图像高(height)nRows
    
    // 创建一个nRows行的vector容器,每一行为一个size_t类型的二维向量容器,其第一维代表行坐标,第二维代表列坐标。
    // 例如,vRowIndices[0] = [1,2,5,8, 11]
    // 行为图像高度height,由于每一行特征点数目不确定,故列是不确定的。
    vector<vector<size_t> > vRowIndices(nRows,vector<size_t>());

    for(int i=0; i<nRows; i++)
        vRowIndices[i].reserve(200);			// 重设大小,200可能作者随缘设的

    const int Nr = mvKeysRight.size();			// 右目图特征点数量,N表示数量,r表示右图,且不能被修改。

2. 右目图每行特征点统计

    for(int iR=0; iR<Nr; iR++)
    {
        const cv::KeyPoint &kp = mvKeysRight[iR];						// 获取特征点iR的y坐标,即行号
        const float &kpY = kp.pt.y;		
        
        // 计算特征点ir在行方向上可能的偏移范围,即可能的行号为[kpY + r, kpY -r]
        // 2:假设在全尺度(scale=1)的情况下,有2个像素的偏移,随着尺度的变化,r也会变化。
        const float r = 2.0f*mvScaleFactors[mvKeysRight[iR].octave];	// .(int)octave代表是金字塔的某层
        const int maxr = ceil(kpY+r);			// 向上取整		
        const int minr = floor(kpY-r);			// 向下取整

        for(int yi=minr;yi<=maxr;yi++)			// 将右目特征点保存在可能的行号中           
        vRowIndices[yi].push_back(iR);
    }

3. 匹配的准备阶段

对于立体矫正后的两张图,在列方向(x)存在最大视差maxD最小视差minD,即在左目图中的任意特征点p,在右图上匹配点的范围应该为[p - maxD, p - minD],而不需要遍历整一行。
maxD = baseline * length_focal / minZ
minD = baseline * length_focal / maxZ

    // Set limits for search		
    const float minZ = mb;							// mb:基线长度,单位为米
    const float minD = 0;
    const float maxD = mbf/minZ;

    // For each left keypoint search a match in the right image
    vector<pair<int, int> > vDistIdx;				// 保存SAD块匹配相似度和左图特征点的索引
    vDistIdx.reserve(N);

	// 遍历左图所有特征点,将左图特征点数据暂存,获取vRowIndices容器中对应行的右目图特征点数据
    for(int iL=0; iL<N; iL++)					
    {
    	// 暂存左图特征点的数据
        const cv::KeyPoint &kpL = mvKeys[iL];	
        const int &levelL = kpL.octave;
        const float &vL = kpL.pt.y;
        const float &uL = kpL.pt.x;

        const vector<size_t> &vCandidates = vRowIndices[vL];	// 获取vRowIndices对应行中存在的右目特征点的列坐标

        if(vCandidates.empty())
            continue;

        const float minU = uL-maxD;		// 理论上的最佳搜索范围
        const float maxU = uL-minD;

        if(maxU<0)
            continue;

		// 初始化是相似度和最佳匹配距离变量
        int bestDist = ORBmatcher::TH_HIGH;		// 初始化最佳相似度,用最大相似度
        size_t bestIdxR = 0;					// 默认描述子距离越小,精度越高

        const cv::Mat &dL = mDescriptors.row(iL);		// 获得左目图描述子的索引行

4. 粗匹配

汉明距离(Hamming distance):两个二进制串之间的汉明距离,指的是其不同位(bit)数的个数。
二进制描述子用汉明距离表两个特征点之间的相似程度。
来源:《视觉SLAM14讲》

将左图特征点iL与右图中的可能的匹配点进行逐个比较,得到最相似匹配点的相似度和索引

        for(size_t iC=0; iC<vCandidates.size(); iC++)
        {
            const size_t iR = vCandidates[iC];				// 已经不是前面的iR,此处是右目特征点的列坐标
            const cv::KeyPoint &kpR = mvKeysRight[iR];		// 获得未校正的右目特征点

			// 左图特征点iL与待匹配点iC的空间尺度差超过2(是否在相似范围内),舍弃该点
            if(kpR.octave<levelL-1 || kpR.octave>levelL+1)	
                continue;

            const float &uR = kpR.pt.x;						// 获得右目特征点的x坐标

            if(uR>=minU && uR<=maxU)						// 若在理论搜索范围内
            {
                const cv::Mat &dR = mDescriptorsRight.row(iR);		// 取出右图特征点的描述子列坐标(x)
                const int dist = ORBmatcher::DescriptorDistance(dL,dR);		// 计算左右描述子的汉明距离,即相似度

                if(dist<bestDist)				// 更新最小相似度及其对应的列坐标(x)
                {
                    bestDist = dist;
                    bestIdxR = iR;
                }
            }
        }

5. 精确匹配

SAD匹配算法:基本思想:差的绝对值之和。
此算法常用于图像块匹配,将每个像素对应数值之差的绝对值求和,据此评估两个图像块的相似度。
特点:该算法快速、但并不精确,通常用于多级处理的初步筛选。

基本流程:
在这里插入图片描述

来源:CSDN@u012507022

        // Subpixel match by correlation
        // 若刚才匹配过程中的最佳描述子距离小于给定的阈值,则进行精确匹配
        if(bestDist<thOrbDist)
        {
            // 计算右图特征点x坐标和对应的金字塔尺度
            const float uR0 = mvKeysRight[bestIdxR].pt.x;
            const float scaleFactor = mvInvScaleFactors[kpL.octave];
            // 尺度缩放后的左右图特征点坐标
            const float scaleduL = round(kpL.pt.x*scaleFactor);			// 左图特征点尺度
            const float scaledvL = round(kpL.pt.y*scaleFactor);
            const float scaleduR0 = round(uR0*scaleFactor);				// 右图
            
            // sliding window search。滑动窗口搜索
            const int w = 5;								// SAD相似度窗口半径
            
            // 提取左图中,以特征点(scaleduL,scaledvL)为中心, 半径为w的图像块patch。
            // 最终滑动窗口尺寸为2*w+1
            cv::Mat IL = mpORBextractorLeft->mvImagePyramid[kpL.octave].rowRange(scaledvL-w,scaledvL+w+1).colRange(scaleduL-w,scaleduL+w+1);
            IL.convertTo(IL,CV_32F);

			// 图像块均值归一化,降低亮度变化对相似度计算的影响
            IL = IL - IL.at<float>(w,w) *cv::Mat::ones(IL.rows,IL.cols,CV_32F);

            int bestDist = INT_MAX;							// 初始化最佳相似度
            int bestincR = 0;								// 初始化滑动窗口搜索优化得到的列坐标偏移量
            const int L = 5;								// 滑动窗口的滑动范围为(-L, L),x轴方向上
            vector<float> vDists;							// 初始化存储图像块相似度
            vDists.resize(2*L+1);

			// 列数方向起点 iniu = r0 - 最大窗口滑动范围 - 图像块尺寸                     
            // 列数方向终点 eniu = r0 + 最大窗口滑动范围 + 图像块尺寸 + 1    
            const float iniu = scaleduR0+L-w;
            const float endu = scaleduR0+L+w+1;
			
			// 判断搜索是否越界
            if(iniu<0 || endu >= mpORBextractorRight->mvImagePyramid[kpL.octave].cols)
                continue;

			// 在搜索范围内从左到右滑动,并计算图像块相似度
            for(int incR=-L; incR<=+L; incR++)
            {
            	// 提取右图中,以特征点(scaleduL,scaledvL)为中心, 半径为w的图像块patch
                cv::Mat IR = mpORBextractorRight->mvImagePyramid[kpL.octave].rowRange(scaledvL-w,scaledvL+w+1).colRange(scaleduR0+incR-w,scaleduR0+incR+w+1);
                IR.convertTo(IR,CV_32F);

				// 图像块均值归一化,降低亮度变化对相似度计算的影响
                IR = IR - IR.at<float>(w,w) *cv::Mat::ones(IR.rows,IR.cols,CV_32F);

                float dist = cv::norm(IL,IR,cv::NORM_L1);	
                // cv::norm()用于计算一个或者两个数组之间的范数

                if(dist<bestDist)				// 更新最小的SAD值和偏移量
                {
                    bestDist = dist;
                    bestincR = incR;
                }

                vDists[L+incR] = dist;			// L+incR 为精细化后的匹配点列坐标(x)
            }

            if(bestincR==-L || bestincR==L)		// 搜索窗口越界判断ß 
                continue;

6. 亚像素插值

使用最佳匹配点及其左右相邻点构成抛物线,使用3点拟合抛物线的方式,用极小值代替之前计算视差值dist

亚像素的理解:
在相机成像的过程中,获得的图像数据是将图像进行了离散化的处理,由于感光元件本身的能力限制,到成像面上每个像素只代表附近的颜色。例如两个感官原件上的像素之间有4.5um的间距,宏观上它们是连在一起的,微观上它们之间还有无数微小的东西存在,这些存在于两个实际物理像素之间的像素,就被称为“亚像素”。

亚像素实际上应该是存在的,只是缺少更小的传感器将其检测出来而已,因此只能在软件上将其近似计算出来。

如下图所示,每四个红色点围成的矩形区域为实际原件上的像素点,黑色点为亚像素点:
在这里插入图片描述
根据相邻两像素之间插值情况的不同,可以调整亚像素的精度,例如四分之一,就是将每个像素从横向和纵向上当做四个像素点。也就是上面图里的红色点之间有三个黑色点。这样通过亚像素插值的方法可以实现从小矩形到大矩形的映射,从而提高分辨率。
来源:CSDN@Murphy.AI

公式参考opencv sgbm源码中的亚像素插值公式,或论文<> 公式7。

在这里插入图片描述

			// Sub-pixel match (Parabola fitting)
            const float dist1 = vDists[L+bestincR-1];		
            const float dist2 = vDists[L+bestincR];
            const float dist3 = vDists[L+bestincR+1];
            const float deltaR = (dist1-dist3)/(2.0f*(dist1+dist3-2.0f*dist2));		// 公式

            if(deltaR<-1 || deltaR>1)					// 亚像素精度的修正量应该是在[-1,1]之间,否则就是误匹配
                continue;

            // Re-scaled coordinate 根据亚像素精度偏移量delta调整最佳匹配索引
            float bestuR = mvScaleFactors[kpL.octave]*((float)scaleduR0+(float)bestincR+deltaR);
            float disparity = (uL-bestuR);

            if(disparity>=minD && disparity<maxD)
            {
                if(disparity<=0)						// 如果存在负视差,则约束为0.01
                {
                    disparity=0.01;
                    bestuR = uL-0.01;
                }
                // 根据视差值计算深度信息,保存最相似点的列坐标(x)信息,保存归一化sad最小相似度
                // 最优视差值/深度选择
                mvDepth[iL]=mbf/disparity;
                mvuRight[iL] = bestuR;
                vDistIdx.push_back(pair<int,int>(bestDist,iL));
            }

7. 删除离散点(outliers)

块匹配相似度阈值判断,归一化SAD值最小,并不代表就一定是匹配的,比如光照变化、弱纹理、无纹理等同样会造成误匹配。

此处误匹配判断条件 norm_sad > 1.5 * 1.4 * median

   sort(vDistIdx.begin(),vDistIdx.end());		// 对SAD值进行排序,sort默认升序排列
    const float median = vDistIdx[vDistIdx.size()/2].first;
    const float thDist = 1.5f*1.4f*median;

    for(int i=vDistIdx.size()-1;i>=0;i--)
    {
        if(vDistIdx[i].first<thDist)			// 阈值范围内,则跳出循环
            break;
        else									// 剔除这个离散点,值置为-1
        {
            mvuRight[vDistIdx[i].second]=-1;
            mvDepth[vDistIdx[i].second]=-1;
        }
    }

8. 关于“胜者为王(Winner Take All)”学习策略

定义:对于输入层接收到的某一个输入量X,竞争层的所有神经元均有输出响应,其中响应值最大的神经元称为“在竞争中获胜的神经元”,其他神经元的输出一律被抑制。

大致步骤:
① 参数(输入、各神经元对应的权向值)归一化;
② 竞争层所有的神经元对应的权向值与输入模式向量进行相似性比较(欧氏距离最小最相似);
③ 获胜神经元兴奋输出为1,并调整自身权值。

来源:bilibili@带你了解人工智能

其实在整个过程中都包含着WTA的思想。


总结

与单目相比,双目的图像帧Frame构造函数包含了计算双目间特征点匹配的部分,即两帧图像稀疏立体匹配

在这里插入图片描述

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jay_z在造梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值