如何识别钓鱼邮件

今天,带大家来防御钓鱼邮件。

钓鱼邮件,即一种伪造邮件,是指利用伪装的电子邮件,来欺骗收件人点击恶意URL,或诱导收件人下载带恶意程序的可执行文件。

对于恶意URL,通常会伪装成和真实网站一样,比如银行或理财的网站,从而骗取收件人的银行卡号码、账户名称及密码等敏感信息。也可能是构造了恶意网站,利用收件人浏览器或系统其他组件漏洞,达到控制收件人电脑的目的。

对于下载恶意软件,很明了,就是想让你运行,在你电脑上运行恶意程序。

钓鱼邮件的主要特点:以公司某部门的名义,如安全部、综合部,使用正式的语气,内容涉及到账号和密码等敏感信息,可能带有链接地址或附件,制造紧张氛围,比如24小时内今日下班前完整账号密码修改。

如下图:

我们来分析这封钓鱼邮件,一是以集团安全组的名义进行下发,二是邮件内容很正式,行文符合收件人公司的习惯,这是下了很大功夫的,三是正文中包含一个链接,四是需要你修改后回复邮件,制造了紧张氛围。

你也可能会说,平时集团发的邮件也是这个样子的啊?对,现实就是这么严峻。

如何识别钓鱼邮件呢?

1、先看发件人:

一种很简单的方法,有的邮件会提示你邮件由另一个邮箱代发,或者邮箱地址不是本公司的,比如china.com的域名,发件人却是chiina.com,再或者邮箱地址是qq或者163等个人邮箱的,那就更没跑了,钓鱼邮件无疑。

但是我上面那个打码的例子,发件人的邮箱初步看确实是集团安全组的,是因为攻击者更改了From信息,但这已经是从Foxmail里点击了邮件详情了,照样没露出攻击者的马脚。这时我们通过网页版的邮箱查看邮件详细信息,并不是说非是网页版才能看到,只是Foxmail没显示邮件的详细信息而已。我用的qq邮件的详细信息:

From: "=?gb18030?B?Ij48aW1nIHNyYz0xIG9uZXJyb3I9YWxlcnQoMSk+?=" <×××××××××@qq.com>
To: "=?gb18030?B?gTesNc7i0KHDyIE3rDU=?=" <×××××@qq.com>
Subject: =?gb18030?B?udi69bn6vNK088rC?=
Mime-Version: 1.0
Content-Type: multipart/alternative;
  boundary="----=_NextPart_5EB50A93_10F6DD20_58D07F72"
Content-Transfer-Encoding: 8Bit
Date: Fri, 8 May 2020 15:30:27 +0800

但是其实那个页面,发送者的邮箱只和收件人的邮箱域名只差了一位,不认真看也是看不出来的。

为什么不直接使用收件人的邮箱域名发呢?因为可能有认证导致邮件发送失败,或者和我们公司那样,第一封钓鱼邮件的发件人是我们公司真实的邮箱地址,可以发送成功,但是可能触发了某种检测机制,导致之后使用真实邮箱作为发件人地址发送会被邮件网关丢弃,只能使用改一下的邮件域名作为地址才能发送。所以看发件人邮件地址,还是能识别出很多钓鱼邮件的。

2、看内容

从第一封邮件的截图可以看出,邮件命中了很多危险因素:以集团安全组(大的部门)的名义进行下发,以修改密码(敏感信息)为邮件主要目的,存在URL地址,要求更改后回复邮件(制造紧张氛围)。这大概率就是钓鱼邮件了。

3、核查

假的,是经不起核查的。如果是普通同事发送的邮件,我们感觉有疑,可以打电话或者微信询问邮件真实性,这就好像微信好友找你借钱,一般都会让他们发句语音来识别身份一样。如果是公司职能部门下发的统一要求,应该在企业微信或钉钉上同步通知员工,从而排除钓鱼邮件的疑惑,毕竟你们和钓鱼邮件的文案过于类似[狗头]。

长按下方图片关注我们:

### 使用自然语言处理技术识别钓鱼邮件 #### 方法概述 为了有效利用自然语言处理(NLP)技术来检测钓鱼邮件,通常会采用多种策略和技术组合。这些方法旨在捕捉电子邮件中的恶意意图特征,从而区分合法通信与潜在威胁。 一种常见做法是从文本数据中提取特征并训练分类模型。这包括但不限于词袋模型(Bag of Words),TF-IDF加权方案以及更先进的预训练语言表示如BERT等深度学习架构[^3]。通过这种方式可以获得关于词汇频率分布的信息,并据此建立预测机制。 对于特定领域内的应用,还可以引入专门设计的知识库或规则集作为辅助手段。例如,在分析邮件标题时考虑常见的社会工程学诱饵模式;审查正文中是否存在可疑URL链接指向非官方站点等情况。此外,结合上下文理解能力较强的算法有助于提高准确性。 #### 工具推荐 - **SpamAssassin**: 这是一款开源反垃圾邮件过滤器,支持插件扩展功能以增强其对新型威胁形式的支持程度。虽然最初并非专门为防范网络钓鱼而开发,但凭借灵活配置选项同样能够胜任此任务。 - **PhishTank API**: 提供了一个社区驱动平台用于报告和查询已知的钓鱼网站列表。当遇到疑似案例时可快速验证真伪,减少误报率的同时也提高了响应速度[^2]。 - **Scikit-Learn/Python**: 利用该框架实现自定义机器学习管道构建工作流,从原始文档预处理到最终决策边界设定均能一站式完成。特别是针对结构化表格型输入非常适合进行监督式学习实验。 ```python from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB import pandas as pd # 加载数据集 data = pd.read_csv('emails.csv') # 特征抽取 vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(data['content']) y = data['label'] # 数据分割 X_train, X_test, y_train, y_test = train_test_split(X, y) # 训练朴素贝叶斯分类器 clf = MultinomialNB().fit(X_train, y_train) # 测试性能 accuracy = clf.score(X_test, y_test) print(f'Accuracy: {accuracy:.4f}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值