【每日机器学习】之SVM之分类间隔

关于支持向量机SVM,下列说法错误的是()
A. L2正则项,作用是最大化分类间隔,使得分类器拥有更强的泛化能力
B. Hinge损失函数,作用是最小化经验分类错误
C. 分类间隔为 1 ∣ ∣ w ∣ ∣ , ∣ ∣ w ∣ ∣ \frac{1}{||w||},||w|| ∣∣w∣∣1,∣∣w∣∣代表向量的模
D. 当参数C越小时,分类间隔越大,分类错误越多,趋于欠学习

分类间隔为 2 ∣ ∣ w ∣ ∣ \frac{2}{||w||} ∣∣w∣∣2

详细见下图
在这里插入图片描述
各选项:
选项A. L2正则项,作用是最大化分类间隔,使得分类器拥有更强的泛化能力
L2正则项: minimize w , b ∣ ∣ w ∣ ∣ 2 2 \underset{\mathbf{w},b}{\text{minimize}}{||\mathbf{w}||_2^2} w,bminimize∣∣w22
选项B. Hinge损失函数,作用是最小化经验分类错误
hinge   loss   function: max ( 0 , 1 − y i ( w ⊺ x i − b ) ) \textbf {hinge loss function:}\text{max}(0,1-y_i(\mathbf{w}^{\intercal}\mathbf{x}_i-b)) hinge loss function:max(0,1yi(wxib))
优化目标:
minimize w , b , ζ ∣ ∣ w ∣ ∣ 2 2 + C ∑ n i = 1 ζ i \underset{\mathbf{w},b,\zeta} {\text{minimize}} \hspace{8pt}||\mathbf{w}||^2_2+C \underset{i=1}{\overset{n}\sum}\zeta_i w,b,ζminimize∣∣w22+Ci=1nζi
subject to y i ( w ⊺ x i − b ) ≥ 1 − ζ i , ζ i ≥ 0 , ∀ i ∈ { 1 , . . . , n } \text{subject to}\hspace{6pt}y_i(\mathbf{w}^\intercal\mathbf{x_i}-b)\ge1-\zeta_i,\zeta_i\ge0,\forall i \in\{1,...,n\} subject toyi(wxib)1ζi,ζi0,i{1,...,n}

选项D. 当参数C越小时,分类间隔越大,分类错误越多,趋于欠学习
考虑Lagrange目标函数
L = 1 2 ∣ ∣ w ∣ ∣ 2 − ∑ α i [ y i ( w ⊺ x + b ) − 1 ] L=\frac{1}{2}\mathbf{||w||}^2-\sum\alpha_i[y_i(\mathbf{w^\intercal x}+b)-1] L=21∣∣w∣∣2αi[yi(wx+b)1]
∂ L ∂ w = w − ∑ α i y i x i = 0 ⇒ w = ∑ i α i y i x i \frac{\partial L}{\partial \mathbf{w}}=\mathbf{w}-\sum\alpha_iy_i\mathbf{x}_i=0\Rightarrow\mathbf{w}=\underset{i}\sum\alpha_iy_i\mathbf{x}_i wL=wαiyixi=0w=iαiyixi
∂ L ∂ b = − ∑ α i y i = 0 ⇒ ∑ α i y i = 0 \frac{\partial L}{\partial b }=-\sum\alpha_iy_i=0\Rightarrow\sum\alpha_iy_i=0 bL=αiyi=0αiyi=0
L = 1 2 ( ∑ α i y i x i ) ( ∑ α j y j x j ) − ∑ α i y i x i ⋅ ( ∑ α j y j x j ) − ∑ α i y i b + ∑ α i L=\frac{1}{2}(\sum\alpha_iy_i\mathbf{x}_i)(\sum\alpha_jy_j\mathbf{x}_j)-\sum\alpha_iy_i\mathbf{x}_i\cdot(\sum\alpha_jy_j\mathbf{x}_j)-\sum\alpha_iy_ib+\sum\alpha_i L=21(αiyixi)(αjyjxj)αiyixi(αjyjxj)αiyib+αi
= ∑ α i − 1 2 ∑ i ∑ j α i α j y i y j x i ⋅ x j =\sum\alpha_i-\frac{1}{2}\underset{i}\sum\underset{j}\sum\alpha_i\alpha_jy_iy_j\mathbf{x}_i\cdot\mathbf{x}_j =αi21ijαiαjyiyjxixj
∴ ∑ α i y i x i ⋅ x j + b > 0 , plus samples \therefore\sum\alpha_iy_i\mathbf{x}_i\cdot\mathbf{x}_j+b\gt0,\text{plus samples} αiyixixj+b>0,plus samples
∑ α i y i x i ⋅ x j + b < 0 , minus samples \hspace{9pt}\sum\alpha_iy_i\mathbf{x}_i\cdot\mathbf{x}_j+b\lt0,\text{minus samples} αiyixixj+b<0,minus samples
C = α i + μ i [ 1 ] C=\alpha_i+\mu_i\mathbf{_{[1]}} C=αi+μi[1]
C作为惩罚因子,C越大确保准确度越大,牺牲间隔,反之亦然。

参考文献

[1] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 132.[PDF]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值