基于机器学习和深度学习的新能源功率预测研究综述–学术论文模式–个人梳理
目录
写在前面
本文是博主根据前人的研究成果总结的机器学习和深度学习等理论方法在新能源功率预测领域的相关研究内容要点,按照学术科技论文写作的模式进行的呈现,包括文章引用等也都做了详细的批注,花了很多时间和心血,一方面是对自己学习成果的一些总结,另一方面也希望对大家有用(尽量不要直接copy哦,转载请标注,如有不当请评论或私信指出哦)。
摘要
可再生能源的间歇性给新型电力系统的运行带来了巨大挑战,准确地预测新能源出力对于电网的安全可靠运行尤为重要。机器学习和深度学习作为数据驱动的方法,已经被广泛应用于新能源功率预测领域,并取得了显著的成果。本文对近5年间在机器学习(ML)和深度学习(DL)在新能源功率预测领域的研究进行了调研;在简要阐述新能源出力预测的特性、ML和DL方法理论等相关概念的基础上,对基于ML和DL的风电和光伏功率预测的研究现状进行了论述,同时总结了ML和DL在新能源功率预测领域的重要优势、价值与作用。调研结果显示&#x