贝叶斯推断-要点整理

本文介绍了贝叶斯推断的基本概念,包括贝叶斯定理及其在参数估计中的应用。讨论了如何选择先验概率分布,如共轭先验和无信息先验,并列举了一些常见搭配。虽然共轭先验的公式推导未展开,但文章为后续深入学习打下了基础。
摘要由CSDN通过智能技术生成

在上一篇文章中,我们提到了最大似然估计法 来在已知样本的情况下求分布的参数。这一次整理一下贝叶斯推断。

1 贝叶斯推断的介绍及公式

贝叶斯推断,据说是推论统计的一种方法,使用贝叶斯定理,能在有更多证据及信息时,更新特定假设的概率。当没有足够多的数据,而又想准确地获取预测信息时,它特别有用,目前我还不清楚为什么在这样的场景下它非常有用,先整理一下与其相关的内容,看看自己能否在这个过程中有更深的理解。

贝叶斯定理:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) = P ( A B ) P ( B ) = P ( B ∣ A ) ∗ P ( A ) P ( B ) \begin{aligned} P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{P(AB)}{P(B)}=\frac{P(B|A)*P(A)}{P(B)} \end{aligned} P(AB)=P(B)P(AB)=P(B)P(AB)=P(B)P(BA)P(A)

因此,我们可以推导出,参数 θ \theta θ的后验概率为:
Π θ ( t ∣ x ) = f X ( x ∣ t ) ∗ Π θ ( t ) f X ( x ) ( t 为 θ 的 一 个 取 值 ) \begin{aligned} \Pi_\theta(t|x)=\frac{f_X(x|t)*\Pi_\theta(t)}{f_X(x)}(t为\theta 的一个取值) \end{aligned} Πθ(tx)=fX(x)fX(xt)Πθ(t)(<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值