Python数据分析案例——柱状图展示每日销售额、地图展示地区销售额

一、概述

以面向对象思想,利用Python对数据进行可视化开发。

1、需求

综合运用pyecharts模块、数据容器、面向对象等知识,完成1-2月的销售数据可视化。用柱状图展示每日销售额,地图展示各地区销售额。

2、设计分析

整个项目包含三个.py文件和四个类

data_define.py 用来编写数据类

file_define.py用来编写读取文件的类

"""
面向对象,数据分析案例,主业务逻辑代码
实现步骤:
1、设计一个类,可以完成数据封装
2、设计一个抽象类,定义文件读取的相关功能,并使用子类实现具体功能
3、读取文件,生产数据对象
4、进行数据需求的逻辑计算(计算每日销售额)
5、通过pyecharts进行图形绘制
"""

二、开发环境

操作系统:Windows 10

Python版本:Python3.9

IDE:PyCharm Community Edition 2022.1.1

三、详细设计

1、设计一个类,完成数据封装

使用__str__方法,便于在开发过程中随时打印检查。若不写,直接print(对象),返回值是对象地址。

"""
数据封装的类
"""
class Record:
    def __init__(self, date, order_id, money, province):
        self.date = date       #销售日期
        self.order_id = order_id        #销售订单号
        self.money = money       #销售金额
        self.province = province        #销售省份

    def __str__(self):
        return f"{self.date}, {self.order_id}, {self.money}, {self.province}"

2、设计类完成文件读取

文件格式各不相同,比如本次案例中使用到的文件有.csv和.json。为了提升代码的可用性,可以通过设计一个抽象类,在抽象类中定义文件读取应该具有的功能,而具体操作由子类实现。

(1)定义抽象类


                
### Python 爬虫与数据可视化项目设计 #### 1. 工具选择 对于Python爬虫而言,常用的选择有Beautiful Soup和Scrapy等框架[^1]。这些工具能够有效地抓取网页上的结构化或非结构化信息。 #### 2. 多任务处理优化性能 当面对大量数据时,采用多线程或多进程的方式可以显著提高效率。例如,在实际应用中可以通过`multiprocessing`库创建多个子进程并行执行不同的任务;也可以利用`threading`模块启动若干个工作线程并发运行特定函数[^2]: ```python import multiprocessing import threading def get_pic(): # 图片获取逻辑... pass def get_gdp(): # GDP数据收集过程... pass if __name__ == '__main__': pic_thread = threading.Thread(target=get_pic) gdp_thread = threading.Thread(target=get_gdp) pic_thread.start() gdp_thread.start() pic_thread.join() gdp_thread.join() ``` 上述代码展示了如何同时开启两个独立的任务——图片下载(`get_pic`)以及GDP统计(`get_gdp`),以此加快整体进度。 #### 3. 数据展示方案 Pyecharts是一个非常优秀的用于制作交互式图表的第三方库,它支持多种类型的图形绘制,并且易于集成到Web页面当中。下面给出一段简单的柱状图生成实例: ```python from pyecharts.charts import Bar from pyecharts.options import * bar = ( Bar(init_opts=opts.InitOpts(width="800px", height="400px")) .add_xaxis(["衬衫","羊毛衫","雪纺衫"]) .add_yaxis("销量",[5, 20, 36]) .set_global_opts(title_opts=opts.TitleOpts(title="某商场服装销售情况")) ) bar.render('chart.html') # 将结果保存为HTML文件以便查看 ``` 此段脚本会根据给定的数据集构建一张描述商品销售额对比关系的直方图,并将其导出成静态网页形式供后续分析使用。 #### 4. 实际案例研究 以豆瓣Top250电影为例,整个流程大致如下:先编写一个专门针对目标网站特性的Spider类去搜集所需资料(比如影片名、评分等),再经过清洗整理之后存入数据库待用;最后借助像Echarts这样的前端组件把最终成果直观呈现出来[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值