目录
Q4: 有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?
Q8: 论文中的实验及结果有没有很好地支持需要验证的科学假设?
一、论文摘要
通过智能手机测量的光电容积描记法(PPG)具有大规模、非侵入式和易于使用的筛查工具潜力。血管老化与动脉硬化增加有关,可以通过PPG测量。我们研究了使用PPG预测健康血管老化(HVA)的可行性,基于两种方法:机器学习(ML)和深度学习(DL)。我们对原始PPG信号进行了数据预处理,包括去趋势、解调和去噪。对于ML,将岭回归惩罚应用于从PPG中提取的38个特征;而对于DL,将多个卷积神经网络(CNN)应用于整个PPG信号作为输入。使用群体来源的Heart for Heart数据进行了分析。ML使用两个特征(AUC为94.7%)- 二阶导数PPG的a波和tpr,包括四个协变量:性别、身高、体重和吸烟- 预测性能与表现最佳的CNN,12层ResNet(AUC为95.3%)类似。在没有DL的重计算成本的情况下,ML可能在寻找潜在的HVA预测生物标志物方面具有优势。整个过程的工作流程描述清晰,已提供开放软件以便复制结果。
这篇博客是关于一篇研究论文的阅读笔记,探讨了利用智能手机采集的PPG信号预测血管老化的问题。通过机器学习(ML)和深度学习(DL)方法,尤其是卷积神经网络(CNN),对原始PPG信号进行预处理和分析,展示了预测血管老化的可能性。研究使用Heart for Heart数据集,发现ML和DL的预测性能相当,ML在某些情况下可能更具优势。文章强调了这种方法在大规模、非侵入式筛查中的潜力,并讨论了其贡献、局限性以及未来研究方向。
订阅专栏 解锁全文
374

被折叠的 条评论
为什么被折叠?



