SparkSql学习---电影评分数据分析案例

文章详细展示了如何利用Pyspark在MovieLens数据集中执行SQL查询,计算用户和电影的平均分,并解决特定的数据分析需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据来源:

MovieLens数据集
MovieLens数据集包含多个用户对多部电影的评级数据,也包括电影元数据信息和用户属性信息。下载地址http://files.grouplens.org/datasets/movielens/

 需求

1.查询用户平均分2.查询电影平均分
3.查询大于平均分的电影的数量
4.查询高分电影中(>3)打分次数最多的用户,并求出此人打的平均分5.查询每个用户的平均打分,最低打分,最高打分
6.查询被评分超过100次的电影,的平均分排名TOP10


代码

#coding:utf-8
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StringType, IntegerType
import pandas as pd
from pyspark.sql import functions as F
if __name__ == '__main__':
    spark=SparkSession.builder.appName("movie_demo").master("local[*]").getOrCrea
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值