图基本介绍
为什么要有图
- 前面我们学了线性表和树
- 线性表局限于一个直接前驱和一个直接后继的关系
- 树也只能有一个直接前驱也就是父节点
- 当我们需要表示多对多的关系时, 这里我们就用到了图。
图的举例说明
图是一种**数据结构**,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。结点也可以称为
顶点。如图:
图的常用概念
- 顶点(vertex)
- 边(edge)
- 路径
- 无向图(下图
- 有向图
- 带权图
图的表示方式
图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。
邻接矩阵
邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n 个顶点的图而言,矩阵是的row 和col 表示的是1…n个点。
1表示可以连通
0表示不可以连通
邻接表
- 邻接矩阵需要为每个顶点都分配n 个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
- 邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
- 举例说明
说明:
- 标号为0的结点的相关联的结点为 1 2 3 4
- 标号为1的结点的相关联结点为0 4,
- 标号为2的结点相关联的结点为 0 4 5
- 。。。
图的创建
- 要求: 代码实现如下图结构.
- 思路分析:
(1) 存储顶点String 使用ArrayList
private ArrayList vertexList; // 存储顶点集合
(2) 保存矩阵int[][] edges
private int[][] edges; // 存储图对应的邻结矩阵
(3)private int numOfEdges; // 表示边的数目
图的深度优先遍历介绍
图遍历介绍
所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1)深度优先遍历(2)广度优先遍历
深度优先遍历基本思想
图的深度优先搜索(Depth First Search) 。
- 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
- 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
- 显然,深度优先搜索是一个递归的过程
深度优先遍历算法步骤
- 访问初始结点v,并标记结点v 为已访问。
- 查找结点v 的第一个邻接结点w。
- 若w 存在,则继续执行4,如果w 不存在,则回到第1 步,将从v 的下一个结点继续。
- 若w 未被访问,对w 进行深度优先遍历递归(即把w 当做另一个v,然后进行步骤123)。
- 查找结点v 的w 邻接结点的下一个邻接结点,转到步骤3。
如图的创建中的结构所示:
深度遍历:
a到b,把b当成新的点继续走遇到c,把c当作新的节点,由于c接下的节点a已经走过了,不能走了,返回,从b开始走向d,把d当成新点,不能走返回,从b走向e,结束
图的广度优先遍历
广度优先遍历基本思想
- 图的广度优先搜索(Broad First Search) 。
- 类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点
广度优先遍历算法步骤
- 访问初始结点v 并标记结点v 为已访问。
- 结点v 入队列
- 当队列非空时,继续执行,否则算法结束。
- 出队列,取得队头结点u。
- 查找结点u 的第一个邻接结点w。
- 若结点u 的邻接结点w 不存在,则转到步骤3;否则循环执行以下三个步骤:
6.1 若结点w 尚未被访问,则访问结点w 并标记为已访问。
6.2 结点w 入队列
6.3 查找结点u 的继w 邻接结点后的下一个邻接结点w,转到步骤6。
如图的创建中的结构所示:
广度遍历:
就是从a开始走bc,d走不通了,此时a从队列弹出去,队列里面有(b,c),从b开始,a,c已经被访问过了,不用访问,继续走b->d,b->e,结束
广度类似于树的层序遍历。
图的深度优先VS 广度优先
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
深度优先遍历顺序为 1->2->4->8->5->3->6->7
广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8
代码实现
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
public class Graph {
private ArrayList<String> vertexList; // 存储顶点集合
private int[][] edges; // 存储图对应的邻结矩阵
private int numOfEdges; // 表示边的数目
// 定义给数组boolean[], 记录某个结点是否被访问
private boolean[] isVisited;
public static void main(String[] args) {
// 测试一把图是否创建ok
int n = 8; // 结点的个数
// String Vertexs[] = {"A", "B", "C", "D", "E"};
String Vertexs[] = { "1", "2", "3", "4", "5", "6", "7", "8" };
// 创建图对象
Graph graph = new Graph(n);
// 循环的添加顶点
for (String vertex : Vertexs) {
graph.insertVertex(vertex);
}
// 添加边
// A-B A-C B-C B-D B-E
// graph.insertEdge(0, 1, 1); // A-B
// graph.insertEdge(0, 2, 1); //
// graph.insertEdge(1, 2, 1); //
// graph.insertEdge(1, 3, 1); //
// graph.insertEdge(1, 4, 1); //
// 更新边的关系
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
// 显示一把邻结矩阵
graph.showGraph();
// 测试一把,我们的dfs遍历是否ok
System.out.println("深度遍历");
graph.dfs(); // A->B->C->D->E [1->2->4->8->5->3->6->7]
// System.out.println();
System.out.println("广度优先!");
graph.bfs(); // A->B->C->D-E [1->2->3->4->5->6->7->8]
}
// 构造器
public Graph(int n) {
// 初始化矩阵和vertexList
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
}
// 得到第一个邻接结点的下标 w
/**
*
* @param index
* @return 如果存在就返回对应的下标,否则返回-1
*/
public int getFirstNeighbor(int index) {
for (int j = 0; j < vertexList.size(); j++) {
if (edges[index][j] > 0) {
return j;
}
}
return -1;
}
// 根据前一个邻接结点的下标来获取下一个邻接结点
//例如a->b然后再a->c
public int getNextNeighbor(int v1, int v2) {
for (int j = v2 + 1; j < vertexList.size(); j++) {
if (edges[v1][j] > 0) {
return j;
}
}
return -1;
}
// 深度优先遍历算法
// i 第一次就是 0
private void dfs(boolean[] isVisited, int i) {
// 首先我们访问该结点,输出
System.out.print(getValueByIndex(i) + "->");
// 将结点设置为已经访问
isVisited[i] = true;
// 查找结点i的第一个邻接结点w
int w = getFirstNeighbor(i);
while (w != -1) {// 说明有
if (!isVisited[w]) {
dfs(isVisited, w);
}
// 如果w结点已经被访问过
w = getNextNeighbor(i, w);
}
}
// 对dfs 进行一个重载, 遍历我们所有的结点,并进行 dfs
public void dfs() {
isVisited = new boolean[vertexList.size()];
// 遍历所有的结点,进行dfs[回溯]
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
dfs(isVisited, i);
}
}
}
// 对一个结点进行广度优先遍历的方法
private void bfs(boolean[] isVisited, int i) {
int u; // 表示队列的头结点对应下标
int w; // 邻接结点w
// 队列,记录结点访问的顺序
LinkedList queue = new LinkedList();
// 访问结点,输出结点信息
System.out.print(getValueByIndex(i) + "=>");
// 标记为已访问
isVisited[i] = true;
// 将结点加入队列
queue.addLast(i);
while (!queue.isEmpty()) {
// 取出队列的头结点下标
u = (Integer) queue.removeFirst();
// 得到第一个邻接结点的下标 w
w = getFirstNeighbor(u);
while (w != -1) {// 找到
// 是否访问过
if (!isVisited[w]) {
System.out.print(getValueByIndex(w) + "=>");
// 标记已经访问
isVisited[w] = true;
// 入队
queue.addLast(w);
}
// 以u为前驱点,找w后面的下一个邻结点
w = getNextNeighbor(u, w); // 体现出我们的广度优先
}
}
}
// 遍历所有的结点,都进行广度优先搜索
public void bfs() {
isVisited = new boolean[vertexList.size()];
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
bfs(isVisited, i);
}
}
}
// 图中常用的方法
// 返回结点的个数
public int getNumOfVertex() {
return vertexList.size();
}
// 显示图对应的矩阵
public void showGraph() {
for (int[] link : edges) {
System.err.println(Arrays.toString(link));
}
}
// 得到边的数目
public int getNumOfEdges() {
return numOfEdges;
}
// 返回结点i(下标)对应的数据 0->"A" 1->"B" 2->"C"
public String getValueByIndex(int i) {
return vertexList.get(i);
}
// 返回v1和v2的权值
public int getWeight(int v1, int v2) {
return edges[v1][v2];
}
// 插入结点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
// 添加边
/**
*
* @param v1 表示点的下标即使第几个顶点 "A"-"B" "A"->0 "B"->1
* @param v2 第二个顶点对应的下标
* @param weight 表示
*/
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}