opencv入门:阈值处理,自适应阈值处理,Otsu处理,均值/方框/高斯/中值滤波

阈值处理

就是剔除图像内像数值高于或低于一定值的像素点。可以获得一个二值图,有效的实现的前景和背景的分离。。

OpenCV 提供了函数 cv2.threshold()和函数 cv2.adaptiveThreshold(),用于实现阈值处理。

threshold函数

retval, dst = cv2.threshold( src, thresh, maxval, type )

  • retval 代表返回的阈值
  • thresh 设置的阈值
  • maxval 代表当type参数为THRESH_BINARY 或者 THRESH_BINARY_INY 类型时,需要设定的最大值
  • type 代表阈值分割的类型
    在这里插入图片描述

在这里插入图片描述

二值化阈值处理(cv2.THRESH_BINARY)

就是处理成二值图。灰度值大于阈值设为最大值,小于就是0.,,虽然都是灰度图,也可以看看彩图啊。

img=cv2.imread('5.jpg',0)
t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY)  # 8位图像最大值就是255,阈值设置为127
cv2.imshow("img",img)
cv2.imshow("rst",rst)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

反二值化阈值处理

就是跟上面倒过来。。

img=cv2.imread('5.jpg',0)
t,rst=cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
cv2.imshow("img",img)
cv2.imshow("rst",rst)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

截断阈值化处理(cv2.THRESH_TRUNC)

将大于阈值的像素设为阈值,小于或等于阈值的不变

img=cv2.imread('5.jpg',0)
t,rst=cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
cv2.imshow("img"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值