自 2022 年 11 月 30 日 ChatGPT 发布以来,AI 大模型在全球范围内掀起了有史以来规模最大的人工智能浪潮。2024年2月16日OpenAI在其官网发布文生视频模型Sora,更让人们惊呼:“AGI实现将从10年缩短到1年”。很多人为我国AI领域的研究进展感到焦虑和担忧。
“民以食为天”,食品的营养、安全、美味一直以来是人们关注的话题,大模型的浪潮是否也会为食品行业带来一些新的实质性价值?
1、什么是大模型?什么是AIGC?
互联网时代,我们可能经常刷到大模型这个专业词汇,这个概念源于自然语言处理领域。自然语言处理是人工智能研究的子领域,被誉为 “人工智能皇冠上的明珠”。人工智能的研究范畴还包括机器学习、机器视觉,智能控制,知识图谱等众多子领域。
理解“大模型”的概念需要梳理自然语言处理的发展历程。
自然语言处理的研究范式发展历程大致如图1所示:
小规模专家知识阶段,主要通过专家总结的符号逻辑知识来处理通用的自然语言;浅层机器学习机器算法阶段,由于浅层机器学习算法(eg,线性回归,朴素贝叶斯)与计算机运算速度的发展,基于小规模语料库的浅层机器学习算法在自然语言处 理领域得以大规模应用;深度学习算法阶段,由于深度学习算法得到突破(多层的、模拟人神经传递的网络模型),被运用到自然语言处理领域中。
预训练语言模型是指,在一个源任务上训练一个初始模型,随后在下游任务(也称目标任务)上继续对该模型进行 精调,从而达到提高下游任务准确率的目的。模型预训练本质上是迁移学习思想的一种应用。
值得注意的是,基于自注意力机制的Transformer模型,能够显著提升自然语言建模的能力,被广泛运用于训练预训练模型,OpenAI 提出了第 1 代 GPT 模型,正式将自然语言处理技术带入“预训练”时代。而且研究表明,模型的参数量越大,模型的性能越佳,ChatGPT是基于预训练模型GTP-3的应用,GPT-3含有1 750亿个超大规模参数,因此被称为“大模型”。
AIGC是指人工智能生成内容技术,可以依据使用者的指令输出图文,基于大模型GPT-3的ChatGPT便是典型的应用之一。其很多其他机器学习模型也能实现AIGC,但大模型在这项能力的表现上非常突出,因大家往往将AIGC、大模型联想到一起。
2、人工智能已在食品行业有哪些应用?
大模型是一种较为新颖,影响广泛的人工智能技术,为探讨其在食品行业中的应用,可以先调研此前的人工智能在食品行业中的应用作为参考。
在食品种类的识别上,通过使用大量的图片数据进行训练深度学习模型,可以实现对菜品种类的识别甚至营养素的含量计算,帮助人们记录饮食,计算营养素含量等。我校已有相关老师研究,图2中所示为放置在公主楼一层的,基于计算机视觉的食品营养素含量计算设备,可以实现对用户每餐各个营养素的记录以及计算。
图2 位于公主楼一层的物联网食物营养成分记录实验设备
在农产品品质的检测上,使用近红外光谱、图像数据、理化特性指标等数据进行训练机器学习模型,可以实现农产品中营养成分(糖分、多酚等)的检测、病虫害的检测。
图3 农夫山泉17.5°橙机器视觉与近红外无损检测设备
(图片来源:迈夫诺达)
在食品知识科普上,通过谣言语料数据,使用自然语言处理的方法,可以训练出实现食品谣言的检测的机器学习模型。图4所示为近年来的研究报道。
图4 基于深度学习的食品谣言鉴别研究
由上我们可知,只要能够产生大量数据,人工智能算法的强大处理能力,均能很好地挖掘数据中的信息,进而为食品行业带来实质性价值。再例如食品风味领域中,使用机器学习可以帮助我们预测葡萄酒感官品级、咖啡香气轮廓和强度,帮助我们筛选潜在的风味化合物;在食品生物技术领域中,使用机器学习可以帮助我们筛选识别鲜味肽、活性肽等。只要数据量足够多,人工智能算法均能从中学到有效信息,并且实现意想不到的功能。
除了数据挖掘,可以实现AIGC的人工智能模型,也在食品行业中有着重要应用,主要应用于食品外观的设计、包装的设计以及营销当中。图5所示为可口可乐全球创意平台“乐创无界”推出的产品,是可口可乐品牌理念与生成式人工智能(AIGC)技术的结合。
图5 首款联合人工智能(AI)打造的无糖可口可乐“未来3000年”
(图片来源:可口可乐)
3、大模型是否能为食品行业带来哪些实质性价值?
结合上述信息,我们可以了解到,此前的人工智能模型在食品行业中有着广泛的运用,而大模型表现出的更强的数据处理能力若应用于食品行业中可能可以实现更好的食品识别、农产品检测、食品谣言鉴别以及食品的包装设计以及营销等。
但值得注意的是,大模型的训练需要大量的数据,以及对硬件设备有着较高的要求,训练大模型的成本往往高于深度学习模型。在具体应用上可能并不如此前只需要极少数据量的模型,但总体上笔者认为这一新的模型可能为此前食品行业难以解决的难题提供新的解决问题的思路。
当然各类大模型的研究中要注重实用价值以及创新性,而不能成为宣传、发文章甚至带货的噱头,那将违背我们做科研的初心。
参考文献:
[1]毕陆名, OpenAI发布首个视频生成模型,周鸿祎:意味着AGI实现将从10年缩短到1年, 2024.
[2]车万翔,杨沐昀,张伟男,等. ChatGPT调研报告[R]. 哈尔滨:哈尔滨工业大学自然语言处理研究所,2023.
[3]李仕超,高梓成,郭浩等.基于RGB-D图像的自动化膳食调查系统[J].中国农业大学学报,2023,28(02):198-206.
[4]迈夫诺达, 好吃的农夫山泉17.5度橙是这样来的!, 2021.
[5]Zhou, L., et al., Application of Deep Learning in Food: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019. 18(6): p. 1793-1811.
[6]Tan, L., et al., Research status of deep learning methods for rumor detection. Multimedia Tools and Applications, 2023. 82(2): p. 2941-2982.
[7]FIBI食品饮料创新, AI共创!可口可乐「未来3000年」在中国上市, 2023.
后记:这是我此前发过的一篇推送,今天在CSDN上又拿来发一遍。当时我发完推送不久,中科院蒋树强老师团队就发布了食品图像的多模态大模型,有种被我预测中了的感觉。我后来也查到也有国自然项目是关于近红外光谱预训练模型的。大模型发展都很快,但相对于芯片来说,都是软实力,因为都是已经有了transformer架构作为基础的,因此国内有新的大模型问世只是开不开展的问题。我最为担心的还是训练模型的芯片,这是我国一时难以补足的短板。