数学建模学习(80):遗传算法(GA)优化多元回归函数

本文主要介绍遗传算法(GA)的原味实现与压缩包实现,通过具体案例展示如何运用遗传算法寻找多元回归函数的最优解。内容包括:原味实现的案例与代码,以及使用遗传算法库进行优化的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理有点复杂,过段时间再更新原理部分。本篇实践为主。

一、遗传算法原味实现

1.1 案例

在这里插入图片描述
n=30,各个变量的边界条件为[-5.12,5.12]

只需要修改的部分:

  • 目标函数
  • 遗传算法相关参数

如果你觉得麻烦,请看第三和第四节。

1.2 代码

代码如下:

import numpy as np
import matplotlib.pyplot as plt

def decode(x
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值