小白零基础学数学建模应用系列(一):探索自由下落模型——以“坠落的硬币”为例

在数学建模竞赛中,选择一个易于理解且有趣的物理现象作为研究对象,往往能够使模型的构建和分析更具吸引力和说服力。本篇文章将以“坠落的硬币”这一经典的自由下落问题为例,探讨如何通过建立物理模型来验证或推翻常见的物理误解,并通过编写代码对模型进行求解。

一、问题背景与假设

在一些流传的说法中,若从帝国大厦顶部抛下一个硬币,其将以极快的速度撞击地面,足以嵌入混凝土中,或者严重伤害到路人。这一说法是否成立?为了探究这一问题,我们可以构建一个简化的物理模型,假设空气阻力的影响可以忽略不计,硬币仅受重力作用。

这个假设虽然并不完全合理,但为了简化模型初期的构建,我们可以暂时接受这一点,随后再通过更复杂的模型来校正这一误差。

二、数学模型的建立

在忽略空气阻力的情况下,硬币下落的过程中主要受到的力为重力,导致其做自由加速运动。假设初速度为零,经过时间 ( t ) 秒后的速度为 ( at ),其中 ( a ) 为重力加速度。硬币下落的高度 ( h ) 可表示为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

川川菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值