tensorflow、keras、sklearn、keras_metrics简明安装

重新配置深度学习环境,简洁版记录如下,供大家参考,欢迎勘误

本人使用的版本为:tensorflow==2.2.0,python=3.7,keras==2.3.1,cpu版本,基于miniconda3

其他版本tensorflow、keras参照以下链接:

https://master--floydhub-docs.netlify.app/guides/environments/

https://zhuanlan.zhihu.com/p/465947475

1、tensorflow

  • 虚拟环境创建:

打开cmd,输入conda激活conda,输入以下代码创建虚拟环境(name处设定环境名称),conda env list代码查看环境是否创建成功 

conda create -n name python=3.7
conda env list
  • 激活环境
     
    conda activate tensorflow
  •  安装tensorflow(确保已安装镜像,且未连接vpn)
     
    conda install tensorflow=2.2.0

2、keras

  • 安装keras前依次安装以下
conda install mingw libpython 
pip install theano
  •  安装keras
pip install keras==2.3.1  

3、sklearn

Sklearn (全称 Scikit-Learn) 是基于 Python 语言的机器学习工具。它建立在 NumPy, SciPy, Pandas 和 Matplotlib 之上

  •  直接输入以下代码(或conda install scikit-learn)
pip install scikit-learn

4、keras_metrics(确定tensorflow、keras安装完成后)

Keras Metrics 是一个用于在 Keras 模型中添加和跟踪各种性能指标的开源项目。它扩展了 Keras 的功能,使得用户可以更方便地监控和评估模型的性能。该项目支持多种常见的评估指标,如准确率、召回率、F1 分数等

  •  直接输入以下代码
pip install keras-metrics

以上为这部分简单的安装教程,在pycharm中添加interpreter环境,显示import无误,正常运行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值