重新配置深度学习环境,简洁版记录如下,供大家参考,欢迎勘误
本人使用的版本为:tensorflow==2.2.0,python=3.7,keras==2.3.1,cpu版本,基于miniconda3
其他版本tensorflow、keras参照以下链接:
https://master--floydhub-docs.netlify.app/guides/environments/
https://zhuanlan.zhihu.com/p/465947475
1、tensorflow
- 虚拟环境创建:
打开cmd,输入conda激活conda,输入以下代码创建虚拟环境(name处设定环境名称),conda env list代码查看环境是否创建成功
conda create -n name python=3.7
conda env list
- 激活环境
conda activate tensorflow
- 安装tensorflow(确保已安装镜像,且未连接vpn)
conda install tensorflow=2.2.0
2、keras
- 安装keras前依次安装以下
conda install mingw libpython
pip install theano
- 安装keras
pip install keras==2.3.1
3、sklearn
Sklearn (全称 Scikit-Learn) 是基于 Python 语言的机器学习工具。它建立在 NumPy, SciPy, Pandas 和 Matplotlib 之上
- 直接输入以下代码(或conda install scikit-learn)
pip install scikit-learn
4、keras_metrics(确定tensorflow、keras安装完成后)
Keras Metrics 是一个用于在 Keras 模型中添加和跟踪各种性能指标的开源项目。它扩展了 Keras 的功能,使得用户可以更方便地监控和评估模型的性能。该项目支持多种常见的评估指标,如准确率、召回率、F1 分数等
- 直接输入以下代码
pip install keras-metrics
以上为这部分简单的安装教程,在pycharm中添加interpreter环境,显示import无误,正常运行