Keras实例教程(1)

现在人工智能,特别是深度学习可谓风光无限,加之各种框架神器层出不穷也令深度学习不再是什么空中楼阁。由于工具化的趋势越来越明显,现在要自行搭建一个深度神经网络已经变得越来越容易。你可能听说过的框架有TensorFlow、Theano、Torch、Caffe、MXNet等等,今天我们就要来介绍构建神经网络最为容易的一个框架——Keras。之所以说Keras是当前构建神经网络最为容易的框架,就是因为相比于Theano和TensorFlow,你会发现使用Keras,你所需要自行编写的代码是最少的。真是不得不令人感叹:没有对比,就没有伤害。


总的来说,使用Keras构建神经网络的基本工作流程主要可以分为4个部分。而且这个用法和思路我个人感觉,很像是在使用Scikit-learn中的机器学习方法

Model definition → Model compilation → Training → Evaluation and

  • 12
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
addition_rnn.py 执行序列学习以执行两个数字(作为字符串)的添加。 antirectifier.py 演示如何为Keras编写自定义图层。 babi_memnn.py 在bAbI数据集上训练一个内存网络以进行阅读理解。 babi_rnn.py 在bAbI数据集上训练一个双支循环网络,以便阅读理解。 cifar10_cnn.py 在CIFAR10小图像数据集上训练一个简单的深CNN。 conv_filter_visualization.py 通过输入空间中的渐变上升可视化VGG16的过滤器。 conv_lstm.py 演示使用卷积LSTM网络。 deep_dream.py 深深的梦想在克拉斯。 image_ocr.py 训练一个卷积堆叠,后跟一个循环堆栈和一个CTC logloss函数来执行光学字符识别(OCR)。 imdb_bidirectional_lstm.py 在IMDB情绪分类任务上训练双向LSTM。 imdb_cnn.py 演示使用Convolution1D进行文本分类。 imdb_cnn_lstm.py 在IMDB情绪分类任务上训练一个卷积堆栈,后跟一个循环堆栈网络。 imdb_fasttext.py 在IMDB情绪分类任务上训练一个FastText模型。 imdb_lstm.py 在IMDB情绪分类任务上训练一个LSTM。 lstm_benchmark.py 比较IMDB情绪分类任务上不同的LSTM实现。 lstm_text_generation.py 生成尼采文字的文字。 mnist_acgan.py 在MNIST数据集上实现AC-GAN(辅助分类器GAN) mnist_cnn.py 在MNIST数据集上训练一个简单的convnet。 mnist_hierarchical_rnn.py 训练一个分级RNN(HRNN)来分类MNIST数字。 mnist_irnn.py Le等人在“以简单的方式初始化整流线性单元的反复网络”中再现具有逐像素连续MNIST的IRNN实验。 mnist_mlp.py 在MNIST数据集上训练一个简单的深层多层感知器。 mnist_net2net.py 在“Net2Net:通过知识转移加速学习”中再现带有MNIST的Net2Net实验。 mnist_siamese_graph.py 从MNIST数据集中的一对数字上训练暹罗多层感知器。 mnist_sklearn_wrapper.py 演示如何使用sklearn包装器。 mnist_swwae.py 列出了一个堆栈,其中AutoEncoder在MNIST数据集上的剩余块上构建。 mnist_transfer_cnn.py 转移学习玩具的例子。 neural_doodle.py 神经涂鸦。 neural_style_transfer.py 神经样式转移。 pretrained_word_embeddings.py 将预训练的词嵌入(GloVe embeddings)加载到冻结的Keras嵌入层中,并使用它在20个新闻组数据集上训练文本分类模型。 reuters_mlp.py 在路透社newswire主题分类任务上训练并评估一个简单的MLP。 stateful_lstm.py 演示如何使用有状态的RNN有效地建模长序列。 variational_autoencoder.py 演示如何构建变体自动编码器。 variational_autoencoder_deconv.py 演示如何使用反褶积层使用Keras构建变体自动编码器。
在TensorFlow中,使用Keras进行图像分类是相当简单的。首先,我们需要导入所需的库,包括TensorFlow和tf.keras。之后,我们可以使用以下代码导入Fashion MNIST数据集: fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() 这将从TensorFlow官方网站下载Fashion MNIST数据集并将其分为训练集和测试集。训练集用于训练模型,测试集用于评估模型的性能。 接下来,我们可以构建图像分类模型。一个简单的模型可以由几个层组成,通过连接这些层,我们可以建立一个深度学习模型来进行图像分类。一个典型的模型包括一个输入层,一个或多个隐藏层,和一个输出层。每个层通常由一些神经元组成,每个神经元都有一些参数需要学习。 在TensorFlow中,我们可以使用tf.keras.Sequential来建立模型。下面是一个示例模型的构建代码: model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10, activation='softmax') ]) 这个模型由三个层组成:一个输入层(Flatten),一个隐藏层(Dense),和一个输出层(Dense)。输入层被用来将图像的二维数组转换为一维数组。隐藏层通常使用relu激活函数来引入非线性性质。输出层使用softmax激活函数来输出每个类别的概率。 接下来,我们需要编译模型,并为其指定损失函数、优化器和评估指标。例如,我们可以使用以下代码编译模型: model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) 在这个例子中,我们选择了adam作为优化器,并使用稀疏分类交叉熵作为损失函数。我们还指定了accuracy作为评估指标,用于衡量模型的性能。 最后,我们可以使用训练集来训练模型,并使用测试集来评估模型的准确性。这可以通过以下代码完成: model.fit(train_images, train_labels, epochs=10) test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) 这个过程将迭代多个epochs,每个epoch将训练模型一次,并使用测试集评估模型的性能。最终,我们可以得到模型在测试集上的准确性(test_acc)。 总结起来,使用TensorFlow和Keras进行图像分类的基本步骤包括导入和加载数据集、构建模型、编译模型并指定优化器、损失函数和评估指标,然后使用训练集训练模型,并使用测试集评估模型的准确性。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [【TensorFlow】Keras机器学习基础知识-基本图像分类](https://blog.csdn.net/cfan927/article/details/103438591)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [tensorflow2.0实例教程2--keras图像分类](https://blog.csdn.net/Labiod/article/details/106235278)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值