Keras入门必读教程:手把手从安装到解决实际问题

本文介绍了Keras,一个流行的深度学习框架,其特点是易用且高效,支持TensorFlow等多个后端。Keras的核心特性包括模块化设计、支持卷积和循环神经网络,以及在CPU和GPU上的运行。文章详细讲解了Keras的安装、基本使用,通过序列模型和函数式模型展示了搭建神经网络的过程,并给出了文本情感分析的实例,强调了Keras在简化深度学习模型构建上的优势。
摘要由CSDN通过智能技术生成

导读:Keras是目前深度学习研究领域非常流行的框架。

作者:史丹青

来源:大数据DT(ID:hzdashuju)

52e42ac595ce6cde928edaf16ee373d3.png

01 Keras简介与安装

Keras是目前深度学习研究领域非常流行的框架,相比于TensorFlow,Keras是一种更高层次的深度学习API。

Keras使用Python编写而成,包含了大量模块化的接口,有很多常用模型仅需几行代码即可完成,大大提高了深度学习的科研效率。它是一个高级接口,后端可支持TensorFlow、Theano、CNTK等多种深度学习基础框架,默认为TensorFlow,其他需要单独设置。

目前,谷歌已经将Keras库移植到TensorFlow中,也让Keras成了TensorFlow中的高级API模块。

Keras具备了三个核心特点:

  • 允许研究人员快速搭建原型设计。

  • 支持深度学习中最流行的卷积神经网络与循环神经网络,以及它们两者的组合。

  • 可以在CPU与GPU上无缝运行。

Keras的口号是“为人类服务的深度学习”,在整体的设计上坚持对开发者友好,在API的设计上简单可读,将用户体验放在首位,希望研发人员可以以尽可能低的学习成本来投入深度学习的开发中。

Keras的API设计是模块化的,用户可以基于自己设想的模型对已有模块进行组装,其中如神经网络层、损失函数、优化器、激活函数等都可以作为模块组合成新的模型。与此同时,Keras的扩展性非常强大,用户可以轻松创建新模块用于科学研究。

目前最简单的引入Keras的方法就是直接使用最新版本的TensorFlow,可以通过以下引入方式在代码中使用Keras。

from tensorflow import keras

此外,Keras具有一个非常活跃的开发者社区,每天都会有大量的开源代码贡献者为Keras提供各种各样的功能。其中Keras-contrib是一个官方的Keras社区扩展版本,包含了很多社区开发者提供的新功能,为Keras的用户提供了更多选择。

Keras-contrib的新功能通过审核后都会整合到Keras核心项目中,如果现在就想在项目中使用,需要单独安装,同样,可以使用pip工具直接安装。

$ sudo pip install git+https://www.github.com/keras-team/keras-contrib.git

随着Karas加入TensorFlow,为了更好地进行代码上的整合,Keras-contrib项目被整合进了TensorFlow Addons。

TensorFlow Addons是一个针对TensorFlow核心库功能的补充,集成了社区最新的一系列方法。由于AI领域发展的速度快,一些最新的算法无法立刻移植到TensorFlow核心库中,所以会优先在TensorFlow Addons中进行发布。

可以使用pip的方式方便地安装TensorFlow Addons,从而使用一些高级的API接口。

$ pip install tensorflow-addons

02 Keras使用入门

Keras包含两种模型类型,第一种是序列模型,第二种是函数式模型。其中后者属于Keras的进阶型模型结构,适用于多入多出、有向无环图或具备共享层的模型,具体可参考Keras官方文档。本节中主要通过介绍序列模型来带读者学习Keras的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值