[蓝桥杯][2014年第五届真题]斐波那契

题解

题目链接

题解

矩阵快速幂。

数据量太大了,直接模拟过程肯定不行。


先看一个结论:S(n) = f(n+2) - 1,其中
S(n) = f(n) + f(n-1) + …… + f(1)
f(n) = f(n-1) + f(n-2)
f(1) = f(2) = 1
我是通过打表找到的规律,应该也可以证明出来。(至于你问我为什么会去打表找规律?因为没啥思路了,觉得这么大的数据量,应该不能是遍历求S(n),所以打表找了一下规律,就发现这个结论了)

这个结论最后再用。


遍历求f(n)还是会超时,这里就用到新知识了,矩阵快速幂。

矩阵快速幂讲解

矩阵快速幂的意思就是进行快速幂运算的是矩阵。

快速幂的知识我在这就不讲了,不知道的可以看Here

矩阵快速幂的本质是将递推公式转换为幂次运算,幂次运算又可以通过快速幂算法来快速实现,从而降低了时间复杂度。


矩阵快速幂中要进行幂次操作的是矩阵,矩阵的幂次操作就是矩阵进行多次相乘,那我们就先来了解一下矩阵乘法:
A * B = C,其中ABC均为矩阵,且ABC满足规格要求:A:n×kB:k×mC:n×m
其中C[i][j]A的第i行与B的第j列对应乘积的和。(线性代数基础)

矩阵乘法代码如下:

struct Matrix { // 我比较喜欢用结构体存一个二维数组表示矩阵,因为传参的时候可以传结构体,而不是一个二维数组
	int m[N][N];
};

Matrix Matrix_mul(Matrix a, Matrix b) {
	Matrix c;
	for(int i = 1;i <= n;i ++) // 矩阵大小为n*n
	for(int j = 1;j <= n;j ++)
	for(int k = 1;k <= n;k ++)
	c.m[i][j] += a.m[i][k] * b.m[k][j];
	return c;
}

快速幂代码如下:

int KSM(int a, int p) { 
	int res = 1;
	while(p) {
		if(p&1) res = res * a;
		a = a * a;
		p>>=1;
	}
	return res;
}

矩阵快速幂代码就是将快速幂中的数值a换成矩阵,函数里面对应的乘法也换成矩阵乘法。

矩阵快速幂代码:

Matrix Matrix_KSM(Matrix a, int p) {
	Matrix res = Matrix(1, 0, 1, 0); // 单位矩阵
	while(p) {
		if(p&1) res = Matrix_mul(res, a);
		a = Matrix_mul(a, a);
		p>>=1;
	}
	return res;
}

为什么矩阵快速幂中的res要初始化为单位矩阵?这与快速幂代码中要将res初始化为1的道理类似,矩阵乘法中任何矩阵乘单位矩阵都是矩阵本身,作用与数值乘法中的1一致,这里的单位矩阵就是起到这样的作用。


以上就是矩阵快速幂的基础知识了,下面我们针对本题来说一下如何使用矩阵快速幂解决问题。

我们可以将斐波那契数列的递推公式f(n) = f(n-1) + f(n-2),转换为矩阵形式(好神奇):
在这里插入图片描述
简写成T * A(n-1) = A(n)T矩阵就是那个2×2的常数矩阵,我们发现数列A就是一个等比数列,公比为常数矩阵T。那我们知道了A(1)之后通过矩阵快速幂不就可以实现计算常数矩阵T的若干次幂了嘛。
举几个例子可以发现,我们要求f(n),对常数矩阵T进行n次幂的操作后得到的矩阵右上角位置的数即为f(n)的值。
快速幂的时间复杂度是O(logn),因此我们将时间复杂度从O(n)降至O(logn)


一些其他的递推式变形(感觉蓝桥杯会个Fib的就不错了):
在这里插入图片描述

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll n, m, p;

struct Matrix {
	ll m[3][3];
	Matrix() {m[1][1] = m[1][2] = m[2][1] = m[2][2] = 0;}
	Matrix(ll a, ll b, ll c, ll d) {
		m[1][1] = a;
		m[1][2] = b;
		m[2][1] = c;
		m[2][2] = d;
	}
};

ll mul(ll a, ll b, ll mod) {
	ll res = 0;
	while(b) {
		if(b&1) res = (res + a) % mod;
		(a<<=1) %= mod;
		b>>=1;
	}
	return res;
}

Matrix Matrix_mul(Matrix a, Matrix b, ll mod) {
	Matrix res;
	for(int i = 1;i <= 2;i ++)
	for(int j = 1;j <= 2;j ++)
	for(int k = 1;k <= 2;k ++)
	res.m[i][j] = (res.m[i][j] + mul(a.m[i][k], b.m[k][j], mod)) % mod;
	return res;
}

ll Fib(ll n, ll mod) {
	Matrix res = Matrix(1, 0, 1, 0);
	Matrix a = Matrix(1, 1, 1, 0);
	
	while(n) {
		if(n&1) res = Matrix_mul(res, a, mod);
		a = Matrix_mul(a, a, mod);
		n>>=1;
	}
	return res.m[1][2];
}

int main()
{
	cin>>n>>m>>p;
	if(m > n+2) printf("%lld\n", (Fib(n+2, p)  + p - 1) % p); // 如果m>n+2,则S(n) = f(n+2)-1 < f(n+2) < f(m),那无需对f(m)进行取模操作 
	else {
		ll Fm = Fib(m, LONG_LONG_MAX); // 得到f(m),因为没法实现边进行矩阵快速幂边取模的操作,因此评测的数据必然能保证将f(m)求出来 
		printf("%lld\n", (Fib(n+2, Fm) + p - 1) % p);  
	}

	return 0;
}

参考

wust_wenhao
顾亦倾

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不牌不改

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值