算法提高(VIP)——聪明的美食家

本文介绍了一种解决最长不下降子序列问题的算法,通过动态规划方法找到一系列食物的美味度序列中,能让人吃得最爽(美味度不下降)的最长序列长度。该算法适用于美食选择场景,确保美食家在品尝美食过程中获得最大满足。
摘要由CSDN通过智能技术生成

题目描述
如果有人认为吃东西只需要嘴巴,那就错了。

都知道舌头有这么一个特性,“由简入奢易,由奢如简难”(据好事者考究,此规律也适合许多其他情况)。

具体而言,如果是甜食,当你吃的食物不如前面刚吃过的东西甜,就很不爽了。

大宝是一个聪明的美食家,当然深谙此道。一次他来到某小吃一条街,准备从街的一头吃到另一头。

为了吃得爽,他大费周章,得到了各种食物的“美味度”。

他拒绝不爽的经历,不走回头路而且还要爽歪歪(爽的次数尽量多)。

输入格式
第一行为一个整数 n,表示小吃街上小吃的数量
第二行为 n 个整数,分别表示 n 种食物的“美味度”

输出格式
一个整数,表示吃得爽的次数

样例输入
10
3 18 7 14 10 12 23 41 16 24

样例输出
6

数据范围
1 < n < 1000
0 < 美食度 < 100


题解
最长不下降子序列:

#include <iostream>
using namespace std;

const int N = 1010;

int w[N], f[N];

int main()
{
	int n;
	cin >> n;
	
	for (int i = 1; i <= n; i ++) cin >> w[i];
	
	int ans = 0;
	for (int i = 1; i <= n; i ++)
	{
		f[i] = 1;
		for (int j = 1;  j < i; j ++)
			if(w[i] >= w[j]) f[i] = max(f[i], f[j] + 1);
		
		ans = max(ans, f[i]);	
	}
	
	cout << ans << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值