简单神经编码模型---可变性

简单神经编码模型—可变性

引入

我们首先来回顾一下上一节的内容:

  • 1.我们案例中的刺激是观看电影时视网膜产生的自然刺激,而我们在建立模型时将输入刺激用高斯白噪声替代;这是因为无论我们如何过滤高斯白噪声,它都将保持高斯;换句话说,它没有特殊的结构,刺激集本身没有方向。
  • 2.1 通过不同时间点白噪声取值的线性组合,我们最终找到了spike-triggered average作为触发响应的表征,选定过滤器 f f f
  • 2.2 我们还可以使用PCA选取主要的刺激成分,降低维度,选定过滤器 f f f
  • 3.利用spike分布概率 P ( s 1 ∣ s p i k e ) P(s_1|spike) P(s1spike)与先验概率 p ( s 1 ) p(s_1) p(s1)分布的比率可以计算出输入输出函数,建立在给定时间t,特定刺激s下产生响应的概率模型

综上我们提出问题:除了找到spike-triggered average,以及使用PCA,我们可不可以直接利用 P ( s 1 ∣ s p i k e ) P(s_1|spike) P(s1spike) p ( s 1 ) p(s_1) p(s1)选定过滤器 f f f呢?

特征选取—DKL(Kullback-Leibler 分歧)

在这里插入图片描述
回到pike分布概率 P ( s 1 ∣ s p i k e ) P(s_1|spike) P(s1spike)与先验概率 p ( s 1 ) p(s_1) p(s1)分布,当它们的分布尽可能不同的时候,此时我们输出的spike才更具有结构以及生物学意义,因此这里我们需要一个衡量标准,在这里我们引入DKL来评估两个概率分布之间的差异。

通过使用DKL,我们可以在先验和spike分布之间选择一个最合适的 f f f(即可以最大化两个分布间差异的 f f f)

Tatyana Sharpee 和 Bo Bialek开发的方法将DKL等效为最大化spike和刺激之间的互信息,即我们需要找到一个能够提供尽可能多信息的刺激成分;这种方法可以应用于非高斯白噪声输入的自然刺激集。

  • 关于特征选取的三个方法,总结如下:
    在这里插入图片描述

对连续时间下的spike响应进行建模

通过上文所提到的三种特征提取的方法,我们假设已经成功得出特定时间t,刺激s下观察到的单个spike的概率r(t)。那么接下来的任务就是处理特定时间t与spike抵达时间点t(spike arrival)之间的关系了。

二项式分布

在这里插入图片描述

我们先从随机过程开始,假设我们在时间点t产生spike响应的概率为p,我们通过一个连续的时间过程T到达t(spike arrival),这里我们可以用 Δ t \Delta t Δt来表示每一个timebin,一共有n个timebin。

在第n个timebin之前产生k个spike的概率 P n [ k ] P_n[k] Pn[k]可以被计算出来:

  • 某一时间点t产生的spike响应可以被看作是一个二项分布,即只存在产生和不产生spike两种情况,且产生响应的概率为 p p p,不产生响应的概率为 ( 1 − p ) (1-p) (1p)
  • p k p^k pk表示的是第n个timebin之前产生k个spike的概率,而在整个时间过程n之中,其他时间点都没有产生任何spike,这里就用 ( 1 − p ) n − k (1-p)^{n-k} (1p)nk来表示
  • P n [ k ] = p k ( 1 − p ) n − k P_n[k]=p^k(1-p)^{n-k} Pn[k]=pk(1p)nk

在这里插入图片描述
我们还计算了该分布的均值和方差,结果如上。

泊松分布

但是在实际建模过程中我们会有许多的timebin,因此每一个timebin下产生spike响应的概率p会变得非常小,这不利于我们之后的工作,所以我们将 n = T / Δ t n=T/\Delta t n=T/Δt替换为 r = P / Δ t r =P/\Delta t r=P/Δt这里的r也就是我们通常意义上的firing rate。
在这里插入图片描述
通过这种方式建立的新分布称之为泊松分布,即均值与方差比值为1(Fano factor=1),与此同时,连续spike间隔的分布呈指数函数
在这里插入图片描述

还是以我们视网膜的案例来进行解释,随着时间的推移,firing rate也呈现一个整体性的变化,如果我们聚焦于一个较小的时间间隔(右上图),计算连续spike间隔分布(右中),并且将这一间隔里的spike分布的方差和均值的比率计算出来(右下),不难发现这和我们上文中所提到的泊松分布具有相同的特征:

  • Fano factor=1,连续spike间隔的分布呈指数函数

所以我们可以说即使firing rate在每个timebin都有变化,细胞的响应看起来都是类似泊松分布的。

在这里插入图片描述

但是在某些情况下,我们的泊松分布模型无法很好的处理那些存在随机的且未被观察到的背景噪声带来的影响。如上图,放大某一个时间区域后我们发现此时连续spike间隔的对数分布不再表现为具有负斜率的直线(指数函数取对数表现为负斜率的直线)。

模型改进

针对我们现有阶段的模型我们还可以做如下改进:

  • 我们可以将一些内在影响构建到我们的编码模型里,例如某些神经元喜欢以独立于刺激波动的特定频率产生spike,来构建一个广义线性模型
  • 通过利用时间重新缩放定理(即将连续spike间隔时间缩放后模型预测的firing rate仍然呈泊松分布),我们可以测试一个模型捕捉在捕捉spike方面做的有多好。
    欢迎大家关注公众号奇趣多多一起交流!
    在这里插入图片描述
  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佩瑞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值