目录
二、配对样本t检验(Paired-sample t-test)
三、独立双样本t检验 (Independent two-sample t-test)
t检验(t test)又称学生t检验(Student t-test)可以说是统计推断中非常常见的一种检验方法,用于统计量服从正态分布,但方差未知的情况。
有关t检验的历史(以及学生t检验的由来)可以参考维基百科(跳转中...)。
t检验的前提是要求样本服从正态分布或近似正态分布,不然可以利用一些变换(取对数、开根号、倒数等等)试图将其转化为服从正态分布是数据,如若还是不满足正态分布,只能利用非参数检验方法。不过当样本量大于30的时候,可以认为数据近似正态分布。
一、单样本t检验(One-sample t-test)
1、目的:
检验单样本的均值与某一已知数(已知总体的均值)是否有显著差异,只对一组样本进行检验。
2、要求:
- 总体方差未知,否则就可以利用 Z 检验(也叫U检验,就是正态检验)
- 正态数据或近似正态
3、应用举例:
- 从某厂生产的零件中随机抽取若干件,检验其某种规格的均值是否与要求的规格相等(双侧检验)
- 在某偏远地区随机抽取若干健康男子,检验其脉搏均数是否高于全体健康男子平均水平(单侧检验)
- 检验某一线城市全体高三学生视力水平是否比全国全体高三学生视力水平低(单侧检验)
- 检验睁眼和闭眼的静息态脑电信号功率间的差值均值是否为零。
4、假设:
- H0:样本均值与已知数相等
- H1:样本均值与已知数不等
5、MATLAB代码:
函数:ttest(),默认参数条件下,所进行的t检验是双尾的。也可以指定参数“Tail”为”left“或者“right”,使其进行对应的左尾或者右尾的t检验。例:
[h,p,ci,stats]=ttest(x,'Tail','lef