AUC和排序损失(Rank loss)的关系(详细解释,通俗易懂)

        在上一篇文章中我们分享了AUC的公式以及在图中所围的面积,此次我们分享一下AUC和排序损失的一个关系。

我们回顾一下AUC的公式:

AUC=\frac{1}{2}\sum _{i=1}^{m-1}(x_{i+1}-x_{i})(y_{i+1}+y_{i})

        我们说AUC就代表的是每两个坐标所围成的梯形求面积然后相加。AUC衡量的是分类器在所有可能的分类阈值上的性能。

它的图像表示为:

一般认为 ,AUC的值越大,分类器的性能越好

        在介绍排序损失之前,我们需要先介绍一下机器学习的赋值。

        举个例子,假如我现在有十张照片,照片内容是数字,我现在需要机器学习识别出数字5的照片,那机器学习是怎样操作的呢?其实是这样的,计算机根据之前数据集训练的规则,然后给这10张照片赋值,如下表所示:

        这个赋值都在0到1之间,假如说现在我设置阈值为0.5,那大于0.5的,都识别为数字5,阈值的设定直接影响查全率和查准率,我们也可以看到,大于0.5的值里面。照片数字也不一定是数字5,这就是有识别错误的照片,了解完这个我们就可以介绍一下排序损失了。

排序损失的公式如下:

l_{rank}=\frac{1}{m^{+}m^{-}}\sum _{x^{+}\in D^{+}}\sum _{x^{-}\in D^{-}}(\mathbb{I}(f(x^{+})< f(x^{-}))+\frac{1}{2}\mathbb{I}(f(x^{+})= f(x^{-})))

哇,公式好长,没关系,别慌,咱们一个一个解释里面的字母含义!(公式自己拐弯的,整不回来了)

m^{+}:正例个数

m^{-}:负例个数

D^{+}:正例集合

D^{-}:负例集合

\mathbb{I}(*):相当于一个布尔发生器,当括号内条件满足时输出1,不满足时输出0。

f:机器学习的预测规则,相当于数学上的一个函数。

你看,是不是也就那样,不难叭~

如果正例的预测值小于反例(就相当于上述说的赋值),则记一个“罚分”(就是布尔发生器输出1),若相等,则记0.5个“罚分”(后面那个,前面乘了一个0.5,所以记0.5)。

        Rank loss衡量的是分类器输出的预测值与实际标签的一致性。在二分类问题中,Rank loss通常指的是正样本的预测值低于负样本预测值的情况。理想情况下,我们希望正样本的预测值高于负样本。

        对应ROC曲线上的面积就如下图所示

我们观察AUC和Rank loss所围的面积不难发现,它们两个的关系如下:

AUC=1-l_{rank}

        在图上表示为:

怎么样,不难理解叭~

ok,这篇就到这里啦,欢迎小伙伴们批评指正~(知识来源于西瓜书,图片自制)

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦云澜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值