非线性方程求根
一、实验目的
- 掌握二分法、不动点迭代法、Steffensen加速迭代法以及牛顿迭代法的基本原理;
- 分别编程实现用二分法、不动点迭代法、Steffensen加速迭代法以及牛顿迭代法求解方程2x2-sinx-1=0在[0,1]区间的根,结果精确到 10-6;
- 要求输出计算中间迭代过程;
- 比较四种算法求解非线性方程的时间。
二、实验设备
- 编程语言:C;
- 实验环境:已安装相关编程环境的计算机1台。
三、算法实现及结果分析
#include<stdio.h>
#include<math.h>
#include<time.h>
#define maxt 1e5
clock_t start, stop;
double duration;
int count;
//原函数
double fx(double x) {
return (2 * pow(x, 2) - sin(x) - 1);
}
//导函数
double dx(double x) {
return (4 * x - cos(x));
}
//迭代函数1
double fx1(double x) {
return sqrt((sin(x)+1)/2);
}
//迭代函数2
double fx2(double x) {
return asin(2 * x * x - 1);//不收敛
}
//Steffensen迭代函数
double SteffensenFx(double x) {
return (x - ((fx1(x) - x) * (fx1(x) - x) / (fx1(fx1(x)) - 2.0 * fx1(x) + x)));
}
//Newton迭代函数
double NewtonFx(double x) {
return (x - fx(x) / dx(x));
}
//二分法
double binary() {
count = 0;
double left = 0;
double right = 1;
double mid= (right + left)/2;
double d = 0;
printf("第%d次二分结果%.9f\n", count, mid);
do{
printf("%.9f", fx(mid));
if (fx(mid) == 0) {
break;
}
else {
if (fx(mid) * fx(right) < 0) {
left = mid;
}
else {
right = mid;
}
d = (left + right) / 2 - mid;
mid = (left + right) / 2;
count++;
printf("第%d次二分结果%.9f\n", count, mid);
}
}while (fabs(d) >= 0.5 * pow(10, -6));
return mid;
}
//不动点迭代法
double fixed_point_iteration() {
count = 0;
double x = 0.9;
double d = 0;
printf("第%d次不动点迭代结果%.9f\n", count, x);
do{
d = x - fx1(x);
x = fx1(x);
count++;
printf("第%d次不动点迭代结果%.9f\n", count, x);
}while (fabs(d) >= 0.5 * pow(10, -6));
return x;
}
//Steffensen加速迭代法
double Steffensen() {
count = 0;
double x = 0.9;
double d = 0;
printf("第%d次Steffensen迭代结果%.9f\n", count, x);
do{
d=x- SteffensenFx(x);
x = SteffensenFx(x);
count++;
printf("第%d次Steffensen迭代结果%.9f\n", count, x);
}while (fabs(d) >= 0.5 * pow(10, -6));
return x;
}
//Newton迭代法
double Newton() {
count = 0;
double x = 0.9;
double d = 0;
printf("第%d次Newton迭代结果%.9f\n", count, x);
do {
d = x - NewtonFx(x);
x = NewtonFx(x);
count++;
printf("第%d次Newton迭代结果%.9f\n", count, x);
} while (fabs(d) >= 0.5 * pow(10, -6));
return x;
}
//比较四种算法求解多项式的时间
void run(double(*f)(),int case_n) {
int i;
start = clock();
for (i = 0;i < maxt;i++) {
(*f)();
}
stop = clock();
duration = ((double)(stop - start)) / CLK_TCK;
printf("第%d种算法打点次数 =%f\n", case_n, (double)(stop - start));
printf("时间为 =%6.2e\n", duration);
}
int main() {
printf("二分法结果:%.9f\n", binary());
run(binary, 1);
printf("不动点迭代法结果:%.9f\n", fixed_point_iteration());
run(fixed_point_iteration, 2);
printf("Steffensen加速迭代法结果:%.9f\n", Steffensen());
run(Steffensen, 3);
printf("Newton迭代法结果:%.9f\n", Newton());
run(Newton, 4);
return 0;
}
通过运行结果我们可以看出,二分法的迭代次数最多,不动点迭代法次之,Steffensen加速迭代法和牛顿迭代法相对较少。
在迭代法选取迭代公式时,需要选择收敛的,上图中选取的是x=sqrt((sin(x)+1)/2),通过计算可知其是收敛的,当我们选取x=asin(2 * x * x - 1)时,我们得到如下结果。此时的迭代公式是发散的。
为了比较四种算法求解非线性方程的时间,我们将输出的中间迭代过程注释。得到下图,从中我们可以看出,二分法所需时间远大于三种迭代的时间,Steffensen迭代法是基于不动点迭代法所改善得到的,所以不动点迭代法的时间更少。