非线性方程求根

非线性方程求根

一、实验目的

  1. 掌握二分法、不动点迭代法、Steffensen加速迭代法以及牛顿迭代法的基本原理;
  2. 分别编程实现用二分法、不动点迭代法、Steffensen加速迭代法以及牛顿迭代法求解方程2x2-sinx-1=0在[0,1]区间的根,结果精确到 10-6
  3. 要求输出计算中间迭代过程;
  4. 比较四种算法求解非线性方程的时间。

二、实验设备

  1. 编程语言:C;
  2. 实验环境:已安装相关编程环境的计算机1台。

三、算法实现及结果分析

#include<stdio.h>
#include<math.h>
#include<time.h>
#define maxt 1e5
clock_t start, stop;
double duration;
int count;
//原函数
double fx(double x) {
	return (2 * pow(x, 2) - sin(x) - 1);
}
//导函数
double dx(double x) {
	return (4 * x - cos(x));
}
//迭代函数1
double fx1(double x) {
	return sqrt((sin(x)+1)/2);
}
//迭代函数2
double fx2(double x) {
	return asin(2 * x * x - 1);//不收敛
}
//Steffensen迭代函数
double SteffensenFx(double x) {
	return (x - ((fx1(x) - x) * (fx1(x) - x) / (fx1(fx1(x)) - 2.0 * fx1(x) + x)));
}
//Newton迭代函数
double NewtonFx(double x) {
	return (x - fx(x) / dx(x));
}
//二分法
double binary() {
	count = 0;
	double left = 0;
	double right = 1;
	double mid= (right + left)/2;
	double d = 0;
	printf("第%d次二分结果%.9f\n", count, mid);
	do{
		printf("%.9f", fx(mid));
		if (fx(mid) == 0) {
			break;
		}
		else {
			if (fx(mid) * fx(right) < 0) {
				left = mid;
			}
			else {
				right = mid;
			}
			d = (left + right) / 2 - mid;
			mid = (left + right) / 2;
			count++;
			printf("第%d次二分结果%.9f\n", count, mid);
		}
	}while (fabs(d) >= 0.5 * pow(10, -6));
	return mid;
}
//不动点迭代法
double fixed_point_iteration() {
	count = 0;
	double x = 0.9;
	double d = 0;
	printf("第%d次不动点迭代结果%.9f\n", count, x);
	do{
		d = x - fx1(x);
		x = fx1(x);
		count++;
		printf("第%d次不动点迭代结果%.9f\n", count, x);
	}while (fabs(d) >= 0.5 * pow(10, -6));
	return x;
}
//Steffensen加速迭代法
double Steffensen() {
	count = 0;
	double x = 0.9;
	double d = 0;
	printf("第%d次Steffensen迭代结果%.9f\n", count, x);
	do{
		d=x- SteffensenFx(x);
		x = SteffensenFx(x);
		count++;
		printf("第%d次Steffensen迭代结果%.9f\n", count, x);
	}while (fabs(d) >= 0.5 * pow(10, -6));
	return x;
}
//Newton迭代法
double Newton() {
	count = 0;
	double x = 0.9;
	double d = 0;
	printf("第%d次Newton迭代结果%.9f\n", count, x);
	do {
		d = x - NewtonFx(x);
		x = NewtonFx(x);
		count++;
		printf("第%d次Newton迭代结果%.9f\n", count, x);
	} while (fabs(d) >= 0.5 * pow(10, -6));
	return x;
}
//比较四种算法求解多项式的时间
void run(double(*f)(),int case_n) {
	int i;
	start = clock();
	for (i = 0;i < maxt;i++) {
		(*f)();
	}
	stop = clock();
	duration = ((double)(stop - start)) / CLK_TCK;
	printf("第%d种算法打点次数 =%f\n", case_n, (double)(stop - start));
	printf("时间为 =%6.2e\n", duration);
}
int main() {
	printf("二分法结果:%.9f\n", binary());
	run(binary, 1);
	printf("不动点迭代法结果:%.9f\n", fixed_point_iteration());
	run(fixed_point_iteration, 2);
	printf("Steffensen加速迭代法结果:%.9f\n", Steffensen());
	run(Steffensen, 3);
	printf("Newton迭代法结果:%.9f\n", Newton());
	run(Newton, 4);
	return 0;
}

请添加图片描述
通过运行结果我们可以看出,二分法的迭代次数最多,不动点迭代法次之,Steffensen加速迭代法和牛顿迭代法相对较少。
在迭代法选取迭代公式时,需要选择收敛的,上图中选取的是x=sqrt((sin(x)+1)/2),通过计算可知其是收敛的,当我们选取x=asin(2 * x * x - 1)时,我们得到如下结果。此时的迭代公式是发散的。
请添加图片描述
为了比较四种算法求解非线性方程的时间,我们将输出的中间迭代过程注释。得到下图,从中我们可以看出,二分法所需时间远大于三种迭代的时间,Steffensen迭代法是基于不动点迭代法所改善得到的,所以不动点迭代法的时间更少。

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值