SparkMlib 之逻辑回归及其案例

什么是逻辑回归?

逻辑回归是一种流行的预测分类响应的方法。它是预测结果概率的广义线性模型的特例。在逻辑回归中,可以通过使用二项式逻辑回归来预测二元结果,也可以通过使用多项式逻辑回归来预测多类结果。

常应用于以下类型的场景:

  1. 预测一个西瓜的好坏;
  2. 预测这封邮件是否是垃圾邮件;
  3. 预测用户是否会成为回头客等等

官网:分类和回归

逻辑回归的优缺点

优点:

  1. 训练速度较快,分类的时候,计算量仅仅只和特征的数目相关;
  2. 简单易理解,模型的可解释性非常好,从特征的权重可以看到不同的特征对最后结果的影响;
  3. 适合二分类问题,不需要缩放输入特征;
  4. 内存资源占用小,因为只需要存储各个维度的特征值。

缺点:

  1. 不能用 Logistic 回归去解决非线性问题,因为 Logistic 的决策面试线性的;
  2. 对多重共线性数据较为敏感;
  3. 很难处理数据不平衡的问题;
  4. 准确率并不是很高,因为形式非常的简单(非常类似线性模型),很难去拟合数据的真实分布;
  5. 逻辑回归本身无法筛选特征,有时会用 gbdt 来筛选特征,然后再上逻辑回归。

参考博客:逻辑回归的优缺点

逻辑回归示例——预测回头客

数据集下载:

链接:
https://pan.baidu.com/s/1AshgNxx1wOWhLgKxgjrZww?pwd=lz3l 

提取码:
lz3l

数据集介绍:

tb_train.csv训练集数据,其中共有五个字段,四个特征字段:user_id、age_range、gender、merchant_id,一个标签字段:label

训练集中的标签字段只有值 010 表示不是回头客,1 表示是回头客。

tb_test.csv测试集数据,其中共有五个字段,四个特征字段:user_id、age_range、gender、merchant_id,一个标签字段:label

测试集中的标签字段都为空值。

需求实现:

import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel}
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SparkSession}

object logistic{

    // TODO 预测用户是否会成为回头客

    def main(args: Array[String]): Unit = {

        val sc: SparkSession = SparkSession.builder().appName("logistic").master("local[*]").getOrCreate()

        // 1.加载训练集数据
        val train_rdd: RDD[Row] = sc.read
                .option("header", "true")
                .csv("tb_train.csv").rdd

        // 2.向量转换
        import sc.implicits._

        val train: DataFrame = train_rdd.map(lines => {
            val arr: Array[String] = lines.mkString(",").split(",")
            LabeledPoint(arr(4).toDouble, Vectors.dense(arr.slice(0, 4).map(_.toDouble)))
        }).toDF("label","features")

        // 3.创建逻辑回归对象
       val lr = new LogisticRegression()
        // 设置最大迭代次数与正则化参数
        lr.setMaxIter(10).setRegParam(0.01)

        // 4. 模型训练
        val model: LogisticRegressionModel = lr.fit(train)

        // 5.模型保存示例
        model.save("./logistic/")

        // 6.加载模型示例
        val regressionModel: LogisticRegressionModel = LogisticRegressionModel.load("./logistic/")

        // 7.加载测试集
        val test_rdd: RDD[Row] = sc.read
                .option("header", "true")
                .csv("tb_test.csv").rdd

        // 8.测试集变量转换
        val test: DataFrame = test_rdd.map(lines => {
            val arr: Array[String] = lines.mkString(",").split(",")
            LabeledPoint(0D, Vectors.dense(arr.slice(0, 4).map(_.toDouble)))
        }).toDF("label", "features")

        // 9.预测测试集数据的结果(不带标签)
        regressionModel
        	.transform(test.select("features"))
        	.select("features","prediction")
        	.limit(100)
        	.show(100)
    }

}

逻辑回归示例——预测西瓜好坏

数据集下载:

链接:
https://pan.baidu.com/s/1AshgNxx1wOWhLgKxgjrZww?pwd=lz3l 

提取码:
lz3l

数据集介绍:

西瓜集.csv 数据集中共有八个字段,六个特征字段:色泽、根蒂、敲声、纹理、脐部、触感,一个标签字段:好瓜,还有一个编号字段。

训练集中的随机百分之20的数据为测试集。

需求实现:

import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel}
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

object Watermelon {

    def main(args: Array[String]): Unit = {

        val sc: SparkSession = SparkSession
                .builder()
                .appName("watermelon")
                .master("local[*]").getOrCreate()

        // 1.加载训练数据集
        val train_rdd: RDD[String] = sc.read
                .option("header", "true")
                .textFile("西瓜集.csv")
                .rdd

        // 2.取出百分之80作为训练集,其余为测试集
        val data: Array[RDD[String]] = train_rdd.randomSplit(Array(0.8, 0.2))

        // 3.转换向量
        import sc.implicits._

        val trainDF: DataFrame = data(0).map(lines => {
            val arr: Array[String] = lines.split(",")
            LabeledPoint(
                if (arr(7).equals("是")) {
                    1D
                } else {
                    0D
                },
                Vectors.dense(
                    // 色泽转换
                    if (arr(1).equals("青绿")){
                        1D
                    }else if (arr(1).equals("乌黑")){
                        2D
                    }else{
                        3D
                    },
                    // 根蒂转换
                    if (arr(2).equals("硬挺")){
                        1D
                    }else if (arr(2).equals("蜷缩")){
                        2D
                    }else{
                        3D
                    },
                    // 敲声转换
                    if (arr(3).equals("清脆")){
                        1D
                    }else if (arr(3).equals("沉闷")){
                        2D
                    }else{
                        3D
                    },
                    // 纹理转换
                    if (arr(4).equals("清晰")){
                        1D
                    }else if (arr(4).equals("模糊")){
                        2D
                    }else{
                        3D
                    },
                    // 脐部转换
                    if (arr(5).equals("平坦")){
                        1D
                    }else if (arr(5).equals("凹陷")){
                        2D
                    }else{
                        3D
                    },
                    // 触感转换
                    if (arr(6).equals("软黏")){
                        1D
                    }else if (arr(6).equals("硬滑")){
                        2D
                    }else{
                        3D
                    }
                )
            )
        }).toDF("label", "features")


        // 4.创建逻辑回归模型
        val lr = new LogisticRegression()

        // 设置参数
        lr.setMaxIter(10).setRegParam(0.01)

        // 5.模型训练
        val model: LogisticRegressionModel = lr.fit(trainDF)

        // 6.将测试数据集转换为向量
        val testDF: DataFrame = data(1).map(lines => {
            val arr: Array[String] = lines.split(",")
            LabeledPoint(
                if (arr(7).equals("是")) {
                    1D
                } else {
                    0D
                },
                Vectors.dense(
                    // 色泽转换
                    if (arr(1).equals("青绿")){
                        1D
                    }else if (arr(1).equals("乌黑")){
                        2D
                    }else{
                        3D
                    },
                    // 根蒂转换
                    if (arr(2).equals("硬挺")){
                        1D
                    }else if (arr(2).equals("蜷缩")){
                        2D
                    }else{
                        3D
                    },
                    // 敲声转换
                    if (arr(3).equals("清脆")){
                        1D
                    }else if (arr(3).equals("沉闷")){
                        2D
                    }else{
                        3D
                    },
                    // 纹理转换
                    if (arr(4).equals("清晰")){
                        1D
                    }else if (arr(4).equals("模糊")){
                        2D
                    }else{
                        3D
                    },
                    // 脐部转换
                    if (arr(5).equals("平坦")){
                        1D
                    }else if (arr(5).equals("凹陷")){
                        2D
                    }else{
                        3D
                    },
                    // 触感转换
                    if (arr(6).equals("软黏")){
                        1D
                    }else if (arr(6).equals("硬滑")){
                        2D
                    }else{
                        3D
                    }
                )
            )
        }).toDF("label", "features")

        // 7.预测西瓜是否是好瓜(带标签)
        println("预测西瓜是否是好瓜(带标签):")
        model.transform(testDF)
                .select("label", "features","prediction")
                .show()

        // 8.预测西瓜是否是好瓜(不带标签)
        println("预测西瓜是否是好瓜(不带标签):")
        model.transform(testDF.select("features"))
                .select("features","prediction")
                .show()

    }

}

逻辑回归示例——预测垃圾邮件

直接看代码

import org.apache.spark.ml.{Pipeline, PipelineModel}
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.sql.{DataFrame, SparkSession}

object Email {

    // TODO 预测垃圾邮件

    def main(args: Array[String]): Unit = {

        val sc: SparkSession = SparkSession
                .builder()
                .appName("email")
                .master("local[*]").getOrCreate()

        // 训练数据集
        val train_data: DataFrame = sc.createDataFrame(Seq(
            ("you@example.com", "hope you are well", 0.0),
            ("raj@example.com", "nice to hear from you", 0.0),
            ("thomas@example.com", "happy holidays", 0.0),
            ("mark@example.com", "see you tomorrow", 0.0),
            ("dog@example.com", "save loan money", 1.0),
            ("xyz@example.com", "save money", 1.0),
            ("top10@example.com", "low interest rate", 1.0),
            ("marketing@example.com", "cheap loan", 1.0)
        )).toDF("email", "message", "label")

        // 1.使用分词器,对信息内容进行分词,指定输入与输出列
        val tokenizer: Tokenizer = new Tokenizer().setInputCol("message").setOutputCol("words")

        // 2.哈希词频统计,将同一个单词分配到同一个分区
        val hashingTF: HashingTF = new HashingTF().setNumFeatures(1000).setInputCol("words").setOutputCol("features")

        // 3.创建逻辑回归模型
        val lr = new LogisticRegression()

        // 设置参数
        lr.setMaxIter(10).setRegParam(0.01)

        // 4.设置管线,进行组合
        val pipeline: Pipeline = new Pipeline().setStages(Array(tokenizer,hashingTF, lr))

        // 5.生成训练模型
        val model: PipelineModel = pipeline.fit(train_data)

        // 6.创建测试数据集
         val test: DataFrame = sc.createDataFrame(Seq(
          ("you@example.com", "ab how are you"),
          ("jain@example.com", "ab hope doing well"),
          ("caren@example.com", "ab want some money"),
          ("zhou@example.com", "ab secure loan"),
          ("ted@example.com", "ab need loan")
        )).toDF("email", "message")

        // 7.对测试集进行预测
        model.transform(test)
                .select("email","message","prediction")
                .show()

    }

}

参考博客:Spark(五)————MLlib

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月亮给我抄代码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值