第六次作业
1、将6个非攻击性的车放在具有如下禁止位置的6*6棋盘上方法数是多少?
解答:将这三个区域分别作为 X 1 、 X 2 、 X 3 X_1、X_2、X_3 X1、X2、X3,根据公式 ∣ A k ∣ = r k ( n − 1 ) ! |A_k| = r_k(n-1)! ∣Ak∣=rk(n−1)!
- 当k = 1,证明此时有一个在禁止区域,有12种方式,从而
r1 = 12
- 当k = 2,证明此时有两个在禁止区域
- 假设在同一个 X i X_i Xi中,每一个 X i X_i Xi有两种选择方式,从而总共为6种
- 假设不在同一个 X i X_i Xi中,从而总共有3 * 4 * 4= 48种
- 从而可知
r2 = 48 + 6 = 54
- 当k = 3,证明此时有三个在禁止区域
- 不可能在同一个 X i X_i Xi
- 假设在两个 X i X_i Xi,从而选择方式为 (3 * 2)*(2 * 4)= 48种
- 假设在三个 X i X_i Xi,从而选择方式为 4 * 4 * 4 = 64种
- 从而可知
r3 = 112
- 当k = 4,证明此时有四个在禁止区域
- 不可能在同一个 X i X_i Xi
- 如果在两个 X i X_i Xi,从而选择方式为2$\times$2的形式,从而选择方式为3 * 2 * 2 = 12 种
- 如果在三个 X i X_i Xi,从热选择方式为 3 * 4 * 4 * 2 = 96 种
- 从而可知
r4 = 108
- 当k = 5,证明此时有五个在禁止区域
- 不可能在同一个 X i X_i Xi
- 不可能在两个 X i X_i Xi
- 选择方式为3 * 4 * 2 * 2 = 48
- 当k = 6,证明此时全部在禁止区域
- 选择方式为8种
综上所述,选择方式为:
6 ! − 12 ∗ 5 ! + 54 ∗ 4 ! − 112 ∗ 3 ! + 108 ∗ 2 ! − 48 + 8 = 80 6!-12*5!+54*4!-112*3!+108*2!-48+8 =80 6!−12∗5!+54∗4!−112∗3!+108∗2!−48+8=80
2、计数{1,2,3,4,5,6}的排列 i 1 , i 2 , i 3 , i 4 , i 5 , i 6 i_1,i_2,i_3,i_4,i_5,i_6 i1,i2,i3,i4,i5,i6的个数,其中 i 1 ≠ 5 ; i 3 ≠ 2 , 3 , 5 ; i 4 ≠ 4 ; i 6 ≠ 5 , 6 i_1\ne 5;i_3\ne 2,3,5;i_4\ne 4; i_6 \ne 5,6 i1=5;i3=2,3,5;i4=4;i6=5,6
利用容斥原理:令 P { X 1 , X 2 , X 3 , X 4 } P\{X_1,X_2,X_3,X_4\} P{X1,X2,X3,X4},依次用于表示上述中不存在的形式。
Σ ∣ A i ∣ = 7 × 5 ! \Sigma |A_i| = 7 \times 5! Σ∣Ai∣=7×5!
Σ ∣ A i ∪ A j ∣ = ( 1 , 3 ) 2 × 4 ! + ( 1 , 4 ) 4 ! + ( 1 , 6 ) 4 ! + ( 3 , 4 ) 3 × 4 ! + ( 3 , 6 ) 5 × 4 ! = 12 × 4 ! \Sigma |A_i \cup A_j| = (1,3) 2 \times 4! + (1,4) 4! + (1,6) 4 ! + (3,4) 3 \times 4! + (3,6) 5 \times 4! = 12 \times 4! Σ∣Ai∪Aj∣=(1,3)2×4!+(1,4)4!+(1,6)4!+(3,4)3×4!+(3,6)5×4!=12×4!
Σ ∣ A i ∪ A j ∪ A k ∣ = ( 1 , 3 , 4 ) 2 × 3 ! + ( 1 , 3 , 6 ) 4 × 3 ! + ( 1 , 4 , 6 ) 3 ! + ( 3 , 4 , 6 ) 5 × 3 ! = 12 × 3 ! \Sigma |A_i \cup A_j \cup A_k| = (1,3,4) 2 \times 3! + (1,3,6) 4 \times 3! + (1,4,6) 3! + (3,4,6) 5 \times 3! = 12 \times 3! Σ∣Ai∪Aj∪Ak∣=(1,3,4)2×3!+(1,3,6)4×3!+(1,4,6)3!+(3,4,6)5×3!=12×3!
Σ ∣ A i ∪ A j ∪ A k ∪ A l ∣ = 2 × 2 ! \Sigma |A_i \cup A_j \cup A_k \cup A_l| = 2\times 2! Σ∣Ai∪Aj∪Ak∪Al∣=2×2!
从而结果为
6
!
−
7
×
5
!
+
12
×
4
!
−
12
×
3
!
+
2
×
2
=
100
6!-7\times 5! + 12\times 4! -12\times 3! + 2\times 2 = 100
6!−7×5!+12×4!−12×3!+2×2=100
3、旋转木马有8个座位,每个座位都代表一种不同的动物。8个女孩脸朝前围坐在旋转木马上,她们可以有多少种方法改变座位,使得每个女孩前面的女孩都与原先的不同?如果所有位置都是一样的,那么问题又会如何变化?
假设为每一个女孩标号为{1,2,3,4,5,6,7,8},从而可以认为最初{1,5}、{2,6}、{3,7}、{4,8}作为相对的组别。
- 假设 A 1 , A 2 , A 3 , A 4 A_1,A_2,A_3,A_4 A1,A2,A3,A4分别为该四组出现在集合中时的集合。
Σ ∣ A i ∣ = 4 × 8 × 6 ! \Sigma |A_i| = 4\times 8 \times 6! Σ∣Ai∣=4×8×6!
Σ
∣
A
i
∪
A
j
∣
=
8
×
6
×
4
!
×
6
\Sigma |A_i \cup A_j| =8 \times 6 \times 4! \times 6
Σ∣Ai∪Aj∣=8×6×4!×6
Σ
∣
A
i
∪
A
j
∪
A
k
∣
=
8
×
6
×
4
×
2
!
×
4
\Sigma |A_i \cup A_j \cup A_k| = 8\times 6\times 4 \times 2! \times 4
Σ∣Ai∪Aj∪Ak∣=8×6×4×2!×4
Σ ∣ A 1 ∩ A 2 ∩ A 3 ∩ A 4 ∣ = 8 × 6 × 4 × 2 \Sigma |A_1 \cap A_2 \cap A_3 \cap A_4| = 8\times 6\times 4\times 2 Σ∣A1∩A2∩A3∩A4∣=8×6×4×2
从而可知,当所有木马作为都不同时,总方法数为:
8
!
−
4
×
8
×
6
!
+
8
×
6
×
4
!
×
6
−
8
×
6
×
4
×
2
!
×
4
+
8
×
6
×
4
×
2
=
23040
8! - 4\times 8\times 6! + 8\times 6 \times 4!\times 6 - 8\times 6\times 4\times 2!\times 4 +8\times 6\times 4\times2 = 23040
8!−4×8×6!+8×6×4!×6−8×6×4×2!×4+8×6×4×2=23040
-
针对循环条件下
可以视为将每一组绑定在一起,从而可知 ∣ A i ∣ = ( 7 − 1 ) ! |A_i| = (7-1)! ∣Ai∣=(7−1)!
Σ ∣ A i ∣ = 4 × 6 ! \Sigma |A_i| = 4\times 6! Σ∣Ai∣=4×6!
Σ ∣ A i ∩ A j ∣ = 6 × 6 × 4 ! \Sigma |A_i \cap A_j| = 6\times6\times 4! Σ∣Ai∩Aj∣=6×6×4!
Σ ∣ A i ∩ A j ∩ A k ∣ = 4 × 4 × 2 ! × 6 \Sigma |A_i \cap A_j \cap A_k| = 4\times4\times 2!\times 6 Σ∣Ai∩Aj∩Ak∣=4×4×2!×6
Σ ∣ A 1 ∩ A 2 ∩ A 3 ∩ A 4 ∣ = 3 ! × 2 × 2 × 2 \Sigma |A_1 \cap A_2 \cap A_3\cap A_4| = 3!\times 2\times 2\times 2 Σ∣A1∩A2∩A3∩A4∣=3!×2×2×2
从而可知,当所有木马相同时,总方法数为:
7
!
−
4
×
6
!
+
6
×
6
×
4
!
−
4
×
4
×
2
!
×
6
+
3
!
×
2
×
2
×
2
=
2880
7!-4\times6!+6\times6\times4!-4\times4\times2!\times6+3!\times2\times2\times2 = 2880
7!−4×6!+6×6×4!−4×4×2!×6+3!×2×2×2=2880
4、设S是多重集合{ ∞ ⋅ e 1 , ∞ ⋅ e 2 , ∞ ⋅ e 3 , ∞ ⋅ e 4 \infty\cdot e_1,\infty\cdot e_2,\infty\cdot e_3,\infty \cdot e_4 ∞⋅e1,∞⋅e2,∞⋅e3,∞⋅e4 }。确定数列 h 0 , h 1 , h 2 , h n , ⋯ h_0,h_1,h_2,h_n,\cdots h0,h1,h2,hn,⋯的生成函数,满足如下条件:
根据生成函数定义:
g
(
x
)
=
Σ
h
n
x
n
=
Σ
e
1
x
e
1
Σ
e
2
x
e
2
Σ
e
3
x
e
3
Σ
e
4
x
e
4
g(x) = \Sigma h_nx^n = \Sigma_{e_1}x^{e_1}\Sigma_{e_2}x^{e_2}\Sigma_{e_3}x^{e_3}\Sigma_{e_4}x^{e_4}
g(x)=Σhnxn=Σe1xe1Σe2xe2Σe3xe3Σe4xe4
对应到限制条件,可以得到:
g
(
x
)
=
(
x
+
x
3
+
x
11
)
(
x
2
+
x
4
+
x
5
)
(
1
+
x
+
x
2
+
⋯
)
2
g(x) = (x+x^3+x^{11})(x^2+x^4+x^5)(1+x+x^2+\cdots)^2
g(x)=(x+x3+x11)(x2+x4+x5)(1+x+x2+⋯)2
5、确定下面方程非负整数解的个数 h n h_n hn的生成函数
2 e 1 + 5 e 2 + e 3 + 7 e 4 = n 2e_1+5e_2+e_3+7e_4 = n 2e1+5e2+e3+7e4=n
将原来式子进行变形:
f
1
=
2
e
1
;
f
2
=
5
e
2
;
f
3
=
e
3
;
f
4
=
7
e
4
f
1
+
f
2
+
f
3
+
f
4
=
n
f_1 = 2e_1;f_2=5e_2;f_3=e_3;f_4=7e_4\\f_1+f_2+f_3+f_4 = n
f1=2e1;f2=5e2;f3=e3;f4=7e4f1+f2+f3+f4=n
满足约束条件:
f
1
f_1
f1是2的倍数,
f
2
f_2
f2是5的倍数,
f
4
f_4
f4是7的倍数。
转化为组合问题,可知有
h
n
=
(
n
+
4
−
1
3
)
h_n = (\begin{matrix}n+4-1\\3\end{matrix})
hn=(n+4−13)
由生成函数定义
g
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
g(x) = f_{n_1}(x)f_{n_2}(x)\cdots
g(x)=fn1(x)fn2(x)⋯
继而通过转化:
g
(
x
)
=
(
1
+
x
2
+
x
4
+
⋯
)
×
(
1
+
x
5
+
x
10
+
⋯
)
×
(
1
+
x
+
x
2
+
⋯
)
×
(
1
+
x
7
+
x
14
+
⋯
)
g(x) = (1+x^2 +x^4+\cdots)\times(1+x^5+x^{10} +\cdots)\times(1+x+x^2+\cdots)\times(1+x^7+x^{14}+\cdots)
g(x)=(1+x2+x4+⋯)×(1+x5+x10+⋯)×(1+x+x2+⋯)×(1+x7+x14+⋯)
6、设 h n h_{n} hn表示满足下面条件下给出1 × n \times n ×n棋盘上色的方法数:用红色、白色、蓝色、绿色。其中红色是偶数,白色是奇数。确定这个数列 h 0 , h 1 , h 2 , ⋯ , h n ⋯ h_0,h_1,h_2,\cdots ,h_n\cdots h0,h1,h2,⋯,hn⋯的指数生成函数,然后求出 h n h_n hn的一个简单公式
根据指数生成函数定义:
g
(
x
)
=
f
n
1
(
x
)
f
n
2
(
x
)
⋯
g(x) = f_{n_1}(x)f_{n_2}(x)\cdots
g(x)=fn1(x)fn2(x)⋯
得到
g
(
x
)
=
(
1
+
x
2
2
!
+
x
4
4
!
+
⋯
)
(
x
+
x
3
3
!
+
⋯
)
(
1
+
x
+
x
2
2
!
+
x
3
3
!
)
2
g
(
x
)
=
1
2
(
e
−
x
+
e
x
)
×
1
2
(
e
x
−
e
−
x
)
×
e
2
x
g
(
x
)
=
1
4
(
e
4
x
−
1
)
g
(
x
)
=
1
4
(
4
x
+
(
4
x
)
2
2
!
+
⋯
)
g(x) = (1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots)(x+\frac{x^3}{3!}+\cdots)(1+x+\frac{x^2}{2!}+\frac{x^3}{3!})^2\\ \\ g(x) = \frac{1}{2}(e^{-x}+e^{x})\times\frac{1}{2}(e^x-e^{-x})\times e^{2x}\\ g(x) = \frac{1}{4}(e^{4x}-1)\\ g(x) = \frac{1}{4}(4x+\frac{(4x)^2}{2!}+\cdots)\\
g(x)=(1+2!x2+4!x4+⋯)(x+3!x3+⋯)(1+x+2!x2+3!x3)2g(x)=21(e−x+ex)×21(ex−e−x)×e2xg(x)=41(e4x−1)g(x)=41(4x+2!(4x)2+⋯)
进一步推出:
h
0
=
0
;
h
n
=
4
n
−
1
h_0 = 0;\\ h_n=4^{n-1}
h0=0;hn=4n−1
7、7个有区别的球放进4个有标志的盒子里,要求第1,2两个盒子必须有偶数个球,第3个盒子有奇数个球,求不同的方案个数。
解答如下:
先当做七个相同的球进行运算,可视为 { ∞ ⋅ a 1 , ∞ ⋅ a 2 , ∞ ⋅ a 3 , ∞ ⋅ a 4 } \{\infty\cdot a_1,\infty\cdot a_2,\infty\cdot a_3,\infty\cdot a_4\} {∞⋅a1,∞⋅a2,∞⋅a3,∞⋅a4}的7-排列。
生成函数如下:
g
(
x
)
=
(
1
+
x
2
+
x
4
+
x
6
)
2
×
(
x
+
x
3
+
x
5
+
x
7
)
×
(
1
+
x
+
x
2
+
⋯
+
x
7
)
g(x) = (1+x^2+x^4+x^6)^2\times(x+x^3+x^5+x^7)\times(1+x+x^2+\cdots+x^7)
g(x)=(1+x2+x4+x6)2×(x+x3+x5+x7)×(1+x+x2+⋯+x7)
从而得到指数为7时的系数:
g
(
x
)
=
(
1
+
2
x
2
+
3
x
4
+
4
x
6
)
(
x
+
x
2
+
2
x
3
+
2
x
4
+
3
x
5
+
3
x
6
+
4
x
7
)
g(x) = (1+2x^2+3x^4+4x^6)(x+x^2+2x^3+2x^4+3x^5+3x^6+4x^7)
g(x)=(1+2x2+3x4+4x6)(x+x2+2x3+2x4+3x5+3x6+4x7)
从而系数为:
1
×
4
+
2
×
3
+
3
×
2
+
4
×
1
=
20
1\times4+2\times3+3\times2+4\times1 = 20
1×4+2×3+3×2+4×1=20
进而可知:
20
×
7
!
=
100800
20\times 7!= 100800
20×7!=100800