2021春季学期离散数学3--第八周作业

本文探讨了棋盘上放置非攻击性车的问题,使用组合数学方法计算了不同禁止位置下的放置方法数。接着,通过容斥原理计算了特定条件下的数列排列个数。此外,还研究了旋转木马上女孩座位变化的两种情况,分别考虑所有位置不同和相同的情况。最后,介绍了多重集合的生成函数和特定方程非负整数解的生成函数,并提出了一个棋盘上颜色分配的指数生成函数和简单公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第六次作业

1、将6个非攻击性的车放在具有如下禁止位置的6*6棋盘上方法数是多少?

在这里插入图片描述

解答:将这三个区域分别作为 X 1 、 X 2 、 X 3 X_1、X_2、X_3 X1X2X3,根据公式 ∣ A k ∣ = r k ( n − 1 ) ! |A_k| = r_k(n-1)! Ak=rk(n1)!

  • 当k = 1,证明此时有一个在禁止区域,有12种方式,从而r1 = 12
  • 当k = 2,证明此时有两个在禁止区域
    • 假设在同一个 X i X_i Xi中,每一个 X i X_i Xi有两种选择方式,从而总共为6种
    • 假设不在同一个 X i X_i Xi中,从而总共有3 * 4 * 4= 48种
    • 从而可知r2 = 48 + 6 = 54
  • 当k = 3,证明此时有三个在禁止区域
    • 不可能在同一个 X i X_i Xi
    • 假设在两个 X i X_i Xi,从而选择方式为 (3 * 2)*(2 * 4)= 48种
    • 假设在三个 X i X_i Xi,从而选择方式为 4 * 4 * 4 = 64种
    • 从而可知r3 = 112
  • 当k = 4,证明此时有四个在禁止区域
    • 不可能在同一个 X i X_i Xi
    • 如果在两个 X i X_i Xi,从而选择方式为2$\times$2的形式,从而选择方式为3 * 2 * 2 = 12 种
    • 如果在三个 X i X_i Xi,从热选择方式为 3 * 4 * 4 * 2 = 96 种
    • 从而可知r4 = 108
  • 当k = 5,证明此时有五个在禁止区域
    • 不可能在同一个 X i X_i Xi
    • 不可能在两个 X i X_i Xi
    • 选择方式为3 * 4 * 2 * 2 = 48
  • 当k = 6,证明此时全部在禁止区域
    • 选择方式为8种

综上所述,选择方式为:

6 ! − 12 ∗ 5 ! + 54 ∗ 4 ! − 112 ∗ 3 ! + 108 ∗ 2 ! − 48 + 8 = 80 6!-12*5!+54*4!-112*3!+108*2!-48+8 =80 6!125!+544!1123!+1082!48+8=80

2、计数{1,2,3,4,5,6}的排列 i 1 , i 2 , i 3 , i 4 , i 5 , i 6 i_1,i_2,i_3,i_4,i_5,i_6 i1,i2,i3,i4,i5,i6的个数,其中 i 1 ≠ 5 ; i 3 ≠ 2 , 3 , 5 ; i 4 ≠ 4 ; i 6 ≠ 5 , 6 i_1\ne 5;i_3\ne 2,3,5;i_4\ne 4; i_6 \ne 5,6 i1=5;i3=2,3,5;i4=4;i6=5,6

利用容斥原理:令 P { X 1 , X 2 , X 3 , X 4 } P\{X_1,X_2,X_3,X_4\} P{X1,X2,X3,X4},依次用于表示上述中不存在的形式。

Σ ∣ A i ∣ = 7 × 5 ! \Sigma |A_i| = 7 \times 5! ΣAi=7×5!

Σ ∣ A i ∪ A j ∣ = ( 1 , 3 ) 2 × 4 ! + ( 1 , 4 ) 4 ! + ( 1 , 6 ) 4 ! + ( 3 , 4 ) 3 × 4 ! + ( 3 , 6 ) 5 × 4 ! = 12 × 4 ! \Sigma |A_i \cup A_j| = (1,3) 2 \times 4! + (1,4) 4! + (1,6) 4 ! + (3,4) 3 \times 4! + (3,6) 5 \times 4! = 12 \times 4! ΣAiAj=(1,3)2×4!+(1,4)4!+(1,6)4!+(3,4)3×4!+(3,6)5×4!=12×4!

Σ ∣ A i ∪ A j ∪ A k ∣ = ( 1 , 3 , 4 ) 2 × 3 ! + ( 1 , 3 , 6 ) 4 × 3 ! + ( 1 , 4 , 6 ) 3 ! + ( 3 , 4 , 6 ) 5 × 3 ! = 12 × 3 ! \Sigma |A_i \cup A_j \cup A_k| = (1,3,4) 2 \times 3! + (1,3,6) 4 \times 3! + (1,4,6) 3! + (3,4,6) 5 \times 3! = 12 \times 3! ΣAiAjAk=(1,3,4)2×3!+(1,3,6)4×3!+(1,4,6)3!+(3,4,6)5×3!=12×3!

Σ ∣ A i ∪ A j ∪ A k ∪ A l ∣ = 2 × 2 ! \Sigma |A_i \cup A_j \cup A_k \cup A_l| = 2\times 2! ΣAiAjAkAl=2×2!

从而结果为
6 ! − 7 × 5 ! + 12 × 4 ! − 12 × 3 ! + 2 × 2 = 100 6!-7\times 5! + 12\times 4! -12\times 3! + 2\times 2 = 100 6!7×5!+12×4!12×3!+2×2=100

3、旋转木马有8个座位,每个座位都代表一种不同的动物。8个女孩脸朝前围坐在旋转木马上,她们可以有多少种方法改变座位,使得每个女孩前面的女孩都与原先的不同?如果所有位置都是一样的,那么问题又会如何变化?

假设为每一个女孩标号为{1,2,3,4,5,6,7,8},从而可以认为最初{1,5}、{2,6}、{3,7}、{4,8}作为相对的组别。

  • 假设 A 1 , A 2 , A 3 , A 4 A_1,A_2,A_3,A_4 A1,A2,A3,A4分别为该四组出现在集合中时的集合。

Σ ∣ A i ∣ = 4 × 8 × 6 ! \Sigma |A_i| = 4\times 8 \times 6! ΣAi=4×8×6!

Σ ∣ A i ∪ A j ∣ = 8 × 6 × 4 ! × 6 \Sigma |A_i \cup A_j| =8 \times 6 \times 4! \times 6 ΣAiAj=8×6×4!×6
Σ ∣ A i ∪ A j ∪ A k ∣ = 8 × 6 × 4 × 2 ! × 4 \Sigma |A_i \cup A_j \cup A_k| = 8\times 6\times 4 \times 2! \times 4 ΣAiAjAk=8×6×4×2!×4

Σ ∣ A 1 ∩ A 2 ∩ A 3 ∩ A 4 ∣ = 8 × 6 × 4 × 2 \Sigma |A_1 \cap A_2 \cap A_3 \cap A_4| = 8\times 6\times 4\times 2 ΣA1A2A3A4=8×6×4×2

从而可知,当所有木马作为都不同时,总方法数为:
8 ! − 4 × 8 × 6 ! + 8 × 6 × 4 ! × 6 − 8 × 6 × 4 × 2 ! × 4 + 8 × 6 × 4 × 2 = 23040 8! - 4\times 8\times 6! + 8\times 6 \times 4!\times 6 - 8\times 6\times 4\times 2!\times 4 +8\times 6\times 4\times2 = 23040 8!4×8×6!+8×6×4!×68×6×4×2!×4+8×6×4×2=23040

  • 针对循环条件下

    可以视为将每一组绑定在一起,从而可知 ∣ A i ∣ = ( 7 − 1 ) ! |A_i| = (7-1)! Ai=(71)!

Σ ∣ A i ∣ = 4 × 6 ! \Sigma |A_i| = 4\times 6! ΣAi=4×6!

Σ ∣ A i ∩ A j ∣ = 6 × 6 × 4 ! \Sigma |A_i \cap A_j| = 6\times6\times 4! ΣAiAj=6×6×4!

Σ ∣ A i ∩ A j ∩ A k ∣ = 4 × 4 × 2 ! × 6 \Sigma |A_i \cap A_j \cap A_k| = 4\times4\times 2!\times 6 ΣAiAjAk=4×4×2!×6

Σ ∣ A 1 ∩ A 2 ∩ A 3 ∩ A 4 ∣ = 3 ! × 2 × 2 × 2 \Sigma |A_1 \cap A_2 \cap A_3\cap A_4| = 3!\times 2\times 2\times 2 ΣA1A2A3A4=3!×2×2×2

从而可知,当所有木马相同时,总方法数为:
7 ! − 4 × 6 ! + 6 × 6 × 4 ! − 4 × 4 × 2 ! × 6 + 3 ! × 2 × 2 × 2 = 2880 7!-4\times6!+6\times6\times4!-4\times4\times2!\times6+3!\times2\times2\times2 = 2880 7!4×6!+6×6×4!4×4×2!×6+3!×2×2×2=2880

4、设S是多重集合{ ∞ ⋅ e 1 , ∞ ⋅ e 2 , ∞ ⋅ e 3 , ∞ ⋅ e 4 \infty\cdot e_1,\infty\cdot e_2,\infty\cdot e_3,\infty \cdot e_4 e1,e2,e3,e4 }。确定数列 h 0 , h 1 , h 2 , h n , ⋯ h_0,h_1,h_2,h_n,\cdots h0,h1,h2,hn,的生成函数,满足如下条件:
元素e1出现{1,3,11}次,元素e2出现{2,4,5}次.

根据生成函数定义:
g ( x ) = Σ h n x n = Σ e 1 x e 1 Σ e 2 x e 2 Σ e 3 x e 3 Σ e 4 x e 4 g(x) = \Sigma h_nx^n = \Sigma_{e_1}x^{e_1}\Sigma_{e_2}x^{e_2}\Sigma_{e_3}x^{e_3}\Sigma_{e_4}x^{e_4} g(x)=Σhnxn=Σe1xe1Σe2xe2Σe3xe3Σe4xe4
对应到限制条件,可以得到:
g ( x ) = ( x + x 3 + x 11 ) ( x 2 + x 4 + x 5 ) ( 1 + x + x 2 + ⋯   ) 2 g(x) = (x+x^3+x^{11})(x^2+x^4+x^5)(1+x+x^2+\cdots)^2 g(x)=(x+x3+x11)(x2+x4+x5)(1+x+x2+)2

5、确定下面方程非负整数解的个数 h n h_n hn的生成函数

2 e 1 + 5 e 2 + e 3 + 7 e 4 = n 2e_1+5e_2+e_3+7e_4 = n 2e1+5e2+e3+7e4=n

将原来式子进行变形:
f 1 = 2 e 1 ; f 2 = 5 e 2 ; f 3 = e 3 ; f 4 = 7 e 4 f 1 + f 2 + f 3 + f 4 = n f_1 = 2e_1;f_2=5e_2;f_3=e_3;f_4=7e_4\\f_1+f_2+f_3+f_4 = n f1=2e1;f2=5e2;f3=e3;f4=7e4f1+f2+f3+f4=n
满足约束条件: f 1 f_1 f1是2的倍数, f 2 f_2 f2是5的倍数, f 4 f_4 f4是7的倍数。

转化为组合问题,可知有
h n = ( n + 4 − 1 3 ) h_n = (\begin{matrix}n+4-1\\3\end{matrix}) hn=(n+413)
由生成函数定义
g ( x ) = f n 1 ( x ) f n 2 ( x ) ⋯ g(x) = f_{n_1}(x)f_{n_2}(x)\cdots g(x)=fn1(x)fn2(x)
继而通过转化:
g ( x ) = ( 1 + x 2 + x 4 + ⋯   ) × ( 1 + x 5 + x 10 + ⋯   ) × ( 1 + x + x 2 + ⋯   ) × ( 1 + x 7 + x 14 + ⋯   ) g(x) = (1+x^2 +x^4+\cdots)\times(1+x^5+x^{10} +\cdots)\times(1+x+x^2+\cdots)\times(1+x^7+x^{14}+\cdots) g(x)=(1+x2+x4+)×(1+x5+x10+)×(1+x+x2+)×(1+x7+x14+)

6、设 h n h_{n} hn表示满足下面条件下给出1 × n \times n ×n棋盘上色的方法数:用红色、白色、蓝色、绿色。其中红色是偶数,白色是奇数。确定这个数列 h 0 , h 1 , h 2 , ⋯   , h n ⋯ h_0,h_1,h_2,\cdots ,h_n\cdots h0,h1,h2,,hn的指数生成函数,然后求出 h n h_n hn的一个简单公式

根据指数生成函数定义:
g ( x ) = f n 1 ( x ) f n 2 ( x ) ⋯ g(x) = f_{n_1}(x)f_{n_2}(x)\cdots g(x)=fn1(x)fn2(x)
得到
g ( x ) = ( 1 + x 2 2 ! + x 4 4 ! + ⋯   ) ( x + x 3 3 ! + ⋯   ) ( 1 + x + x 2 2 ! + x 3 3 ! ) 2 g ( x ) = 1 2 ( e − x + e x ) × 1 2 ( e x − e − x ) × e 2 x g ( x ) = 1 4 ( e 4 x − 1 ) g ( x ) = 1 4 ( 4 x + ( 4 x ) 2 2 ! + ⋯   ) g(x) = (1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots)(x+\frac{x^3}{3!}+\cdots)(1+x+\frac{x^2}{2!}+\frac{x^3}{3!})^2\\ \\ g(x) = \frac{1}{2}(e^{-x}+e^{x})\times\frac{1}{2}(e^x-e^{-x})\times e^{2x}\\ g(x) = \frac{1}{4}(e^{4x}-1)\\ g(x) = \frac{1}{4}(4x+\frac{(4x)^2}{2!}+\cdots)\\ g(x)=(1+2!x2+4!x4+)(x+3!x3+)(1+x+2!x2+3!x3)2g(x)=21(ex+ex)×21(exex)×e2xg(x)=41(e4x1)g(x)=41(4x+2!(4x)2+)
进一步推出:
h 0 = 0 ; h n = 4 n − 1 h_0 = 0;\\ h_n=4^{n-1} h0=0;hn=4n1

7、7个有区别的球放进4个有标志的盒子里,要求第1,2两个盒子必须有偶数个球,第3个盒子有奇数个球,求不同的方案个数。

解答如下:

先当做七个相同的球进行运算,可视为 { ∞ ⋅ a 1 , ∞ ⋅ a 2 , ∞ ⋅ a 3 , ∞ ⋅ a 4 } \{\infty\cdot a_1,\infty\cdot a_2,\infty\cdot a_3,\infty\cdot a_4\} {a1,a2,a3,a4}的7-排列。

生成函数如下:
g ( x ) = ( 1 + x 2 + x 4 + x 6 ) 2 × ( x + x 3 + x 5 + x 7 ) × ( 1 + x + x 2 + ⋯ + x 7 ) g(x) = (1+x^2+x^4+x^6)^2\times(x+x^3+x^5+x^7)\times(1+x+x^2+\cdots+x^7) g(x)=(1+x2+x4+x6)2×(x+x3+x5+x7)×(1+x+x2++x7)
从而得到指数为7时的系数:
g ( x ) = ( 1 + 2 x 2 + 3 x 4 + 4 x 6 ) ( x + x 2 + 2 x 3 + 2 x 4 + 3 x 5 + 3 x 6 + 4 x 7 ) g(x) = (1+2x^2+3x^4+4x^6)(x+x^2+2x^3+2x^4+3x^5+3x^6+4x^7) g(x)=(1+2x2+3x4+4x6)(x+x2+2x3+2x4+3x5+3x6+4x7)
从而系数为:
1 × 4 + 2 × 3 + 3 × 2 + 4 × 1 = 20 1\times4+2\times3+3\times2+4\times1 = 20 1×4+2×3+3×2+4×1=20
进而可知:
20 × 7 ! = 100800 20\times 7!= 100800 20×7!=100800

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值