SVM 支持向量机

 

目录

一、前置知识回顾

1、梯度下降

2、拉格朗日乘子法(等式约束的最优化问题)

3、KKT回顾(不等式约束的最优化问题)

二、感知器模型回顾

三、SVM线性可分

3.1 硬间隔SVM

​3.1 软间隔SVM 

​四、SVM线性不可分

五、核函数

六、SMO

具体推导过程如下:

七、SVR算法(svm用于回归)​ ​

八、sk-learn 包的相关参数


一、前置知识回顾

1、梯度下降

 批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

 

2、拉格朗日乘子法(等式约束的最优化问题)

3、KKT回顾(不等式约束的最优化问题)

 

 简易解说拉格朗日对偶(Lagrange duality)

二、感知器模型回顾

 

三、SVM线性可分

3.1 硬间隔SVM

 

 

 乘以y是为了去掉绝对值符号

 

 

 

 

3.1 软间隔SVM 

 

 

 

四、SVM线性不可分

 

 

五、核函数

 

SVM的两个参数 C 和 gamma (参考链接)

SVM模型有两个非常重要的参数C与gamma。其中,

C是惩罚系数,即对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。C过大或过小,泛化能力变差

gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。
 

六、SMO

 

 

 

具体推导过程如下:

 

 

 

 

 

 

七、SVR算法(svm用于回归)

 

 

 

八、sk-learn 包的相关参数Sklearn参数详解—SVM

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值