目录
一、前置知识回顾
1、梯度下降
批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解
2、拉格朗日乘子法(等式约束的最优化问题)
3、KKT回顾(不等式约束的最优化问题)
二、感知器模型回顾
三、SVM线性可分
3.1 硬间隔SVM
乘以y是为了去掉绝对值符号
3.1 软间隔SVM
四、SVM线性不可分
五、核函数
SVM的两个参数 C 和 gamma (参考链接)
SVM模型有两个非常重要的参数C与gamma。其中,
C是惩罚系数,即对误差的宽容度。c越高,说明越不能容忍出现误差,容易过拟合。C越小,容易欠拟合。C过大或过小,泛化能力变差
gamma是选择RBF函数作为kernel后,该函数自带的一个参数。隐含地决定了数据映射到新的特征空间后的分布,gamma越大,支持向量越少,gamma值越小,支持向量越多。支持向量的个数影响训练与预测的速度。
六、SMO
具体推导过程如下:
七、SVR算法(svm用于回归)
八、sk-learn 包的相关参数Sklearn参数详解—SVM