人工智能学习
文章平均质量分 58
幻术浪
转行人工智能,对机器人控制理论、nlp感兴趣
展开
-
深度学习基础
1、Tensorflow2、BP神经网络、RBF神经网络3、CNN4、RNN5、GAN原创 2021-11-12 14:25:48 · 647 阅读 · 0 评论 -
特征工程(学习笔记总结)
1、需要哪些数据?1)业务分析:基于对业务规则的理解,尽可能d2)2、数据如何存储?3、数据清洗4、数据工程原创 2021-06-19 22:52:13 · 416 阅读 · 0 评论 -
主题模型
矩阵分解SVD和NMF主题模型1、LDA2、LD参数学习-gabbis 采样(类似坐标轴下降)转载 2021-06-16 17:17:00 · 80 阅读 · 0 评论 -
隐马尔科夫模型(HMM)
1、隐马尔可夫模型原创 2021-06-15 15:18:21 · 119 阅读 · 0 评论 -
聚类---EM算法思想、GMM(高斯混合模型)
1、贝叶斯算法原创 2021-06-11 16:12:10 · 313 阅读 · 0 评论 -
多标签分问题
目录1、单标签二分类2、单标签多分类2.1 OVO2.2 ovr2.3 error correcting3、多标签算法3.1 转换策略3.1.1 binary relevance3.1.2 classifier chains3.1.3 calibrated label ranking3.2 算法适应3.2.1 ML-KNN3.2.2 ML-DT1、单标签二分类2、单标签多分类2.1 OVO...原创 2021-06-08 11:40:28 · 373 阅读 · 0 评论 -
SVM 支持向量机
一、前置知识回顾1、梯度下降2、拉格朗日乘子法(有约束的最优化问题)3、KKT回顾er原创 2021-05-31 23:40:10 · 508 阅读 · 3 评论 -
聚类:划分聚类(k-means、k-means||、层次聚类)+密度聚类
曼哈顿距离:距离很近情况下的近似计算;切比雪夫距离:某一维度距离特别大,其他维度距离都很近的情况下距离计算大多数情况都用欧氏距离转载 2021-05-28 16:17:44 · 3666 阅读 · 0 评论 -
集成学习思想--Boosting(Adaboost、Gradient Boosting(GBT/GBDT/GBRT))
离散化具体推导过程参考:数据挖掘领域十大经典算法之—AdaBoost算法(超详细附代码)转载 2021-05-26 16:29:27 · 282 阅读 · 0 评论 -
分类算法---logistic回归、softmax回归、KNN、决策树
目录1、logistic回归2、softmax回归3、KNN4、决策树1、logistic回归本质:二分类算法,计算的是样本x属于某一个类别的概率为p,样本属于另一个类别的概率为1-p.最终认为样本x属于概率较大的那一个类别。2、softmax回归softmax是一个多分类算法。需要计算样本属于某一个类别的概率。最终认为:样本属于概率最大的那一个类别。softmax会为每一个类别训练一个参数theta向量,所以在softmax需要求解的参数是由...原创 2021-05-24 13:58:15 · 1273 阅读 · 0 评论 -
线性回归---梯度下降、最小二乘法、Ridge回归(岭回归)(L2 norm)、LASSO回归(L1 norm)
最小二乘法是概率密度是高斯分布的最大似然估计的状况。原创 2021-05-20 16:53:20 · 1585 阅读 · 0 评论 -
人工智能学习--数学基础回顾
目录1、函数2、概率相关的公式3、最大似然估计(MLE)4、矩阵、向量的运算5、梯度下降法1、函数函数的定义:一个自变量x对应唯一一个因变量y(对具体参考坐标系而言)2、概率相关的公式条件概率(已知落在B,落在A1B的概率,如图)全概率公式贝叶斯公式相关概念链接:理解概率分布函数和概率密度函数协方差:可以通俗的理解为:两个变量在变化过程中是同方向变化?还是反方向变化?同向或反向程度如何?相关系数(协方差进行标准化):标准...原创 2021-05-20 16:09:46 · 260 阅读 · 0 评论