目录
1、函数
函数的定义:
一个自变量x对应唯一一个因变量y(对具体参考坐标系而言)
2、概率相关的公式
条件概率(已知落在B,落在A1B的概率,如图)
全概率公式贝贝叶斯公式
相关概念链接:理解概率分布函数和概率密度函数
协方差:
可以通俗的理解为:两个变量在变化过程中是同方向变化?还是反方向变化?同向或反向程度如何?
相关系数(协方差进行标准化):
标准差描述了变量在整体变化过程中偏离均值的幅度,协方差除以标准差,也就是把协方差中变量变化幅度对协方差的影响剔除掉,这样协方差也就标准化了,它反应的就是两个变量每单位变化时的情况。
最大似然估计(MLE)
3、矩阵、向量的运算
矩阵是一种线性变换函数
对角元的和成为方阵的迹,称为trA
行列式:变换前后基向量面积比例的度量
如果变换后的基向量不相关,则有逆矩阵,反之,则无逆矩阵。
如无逆矩阵:
方程有解:变换后的向量v与基向量共线
方程无解:变换后的向量v与基向量不共线
求逆的参考链接:求解逆矩阵的常用三种方法
向量
点积(=投影):验证两个向量指向是否相同
叉积(=行列式=面积):a向量在b向量右边,面积为正,反之为负。方向垂直于a,b
Beta函数, Gamma函数, Beta分布, Dirichlet分布
伯努利分布、二项分布、Beta分布、多项分布和Dirichlet分布与他们之间的关系,以及在LDA中的应用
常见分布律、分布函数、概率密度表,伯努利分布、二项分布、泊松分布、几何分布、超几何分布、均匀分布、高斯分布、指数分布