高斯低通滤波原理(图像处理)

一般来说,噪声都是由高频成分组成的,所以用低通滤波器对图像进行卷积处理,就可以有效地滤除噪声。

高斯函数就是一个这样的低通滤波器,它属于线性滤波。

高斯函数的主要特征:它的傅里叶变换函数仍然是高斯函数。

所以应用快速傅里叶变换可以把空间域内的卷积运算变换为频率域内的乘积运算,这样对于半径很大的高斯核来说,大大降低了运算时间。

在图像处理中,需要的二维高斯函数:
在这里插入图片描述
来源:《C#数字图像处理算法典型案例》 赵春江 人民邮电出版社

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稻田里展望者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值