深度学习中模型训练效果不好的原因以及防止过拟合的方法

当我们用自定义的模型去训练某个数据集时,
经常会出现效果不佳的情况:精度太低、损失降不下去、泛性太差等情况。可能的原因有:

  • 数据集样本太少,多样性不够;
  • 网络模型是否添加了BN层,损失函数和激活函数的选取;
  • 优化器的选取,学习率的设置等;

这里暂时不考虑数据集的原因,我们首先来看一下网络模型和优化算法中可能存在的问题:

1. 是否选择合适的损失函数

神经网络的损失函数是非凸的,有多个局部最低点,目标是找到一个可用的最低点。
非凸函数是凹凸不平的,但是不同的损失函数凹凸起伏的程度不同,例如下述的平方损失和交叉熵损失,后者起伏更大,且后者更容易找到一个可用的最低点,从而达到优化的目的。
- Square Error(平方损失)
- Cross Entropy(交叉熵损失)

2. 是否选择了合适的Mini-batch size

使用合适的batch size进行学习,一方面可以减少计算量,一方面有助于跳出局部最优点。
batch取太大会陷入局部最小值,batch取太小会抖动厉害,因此要选择一个合适的batch size。

batch size选取时可以采用以下策略:

  • 当有足够算力时,选取batch size为32或更小一些。
  • 算力不够时,在效率和泛化性之间做trade-off,尽量选择更小的batch size。
  • 当模型训练到尾声
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值