深度学习中模型训练效果不好的原因
当我们用自定义的模型去训练某个数据集时,
经常会出现效果不佳的情况:精度太低、损失降不下去、泛性太差等情况。可能的原因有:
- 数据集样本太少,多样性不够;
- 网络模型是否添加了BN层,损失函数和激活函数的选取;
- 优化器的选取,学习率的设置等;
这里暂时不考虑数据集的原因,我们首先来看一下网络模型和优化算法中可能存在的问题:
1. 是否选择合适的损失函数
神经网络的损失函数是非凸的,有多个局部最低点,目标是找到一个可用的最低点。
非凸函数是凹凸不平的,但是不同的损失函数凹凸起伏的程度不同,例如下述的平方损失和交叉熵损失,后者起伏更大,且后者更容易找到一个可用的最低点,从而达到优化的目的。
- Square Error(平方损失)
- Cross Entropy(交叉熵损失)
2. 是否选择了合适的Mini-batch size
使用合适的batch size进行学习,一方面可以减少计算量,一方面有助于跳出局部最优点。
batch取太大会陷入局部最小值,batch取太小会抖动厉害,因此要选择一个合适的batch size。
batch size选取时可以采用以下策略:
- 当有足够算力时,选取batch size为32或更小一些。
- 算力不够时,在效率和泛化性之间做trade-off,尽量选择更小的batch size。
- 当模型训练到尾声