Dirichlet distribution的定义和性质

Dirichlet distribution

在统计学中,Dirichlet distribution 常被记为 D i r ( α ) Dir(\alpha) Dir(α),在贝叶斯统计中, Dirichlet distribution 经常被用作先验分布,事实上dirichlet distribution是分类分布(categorical distribution)和多项分布(multinomial distribution)的共轭先验。

Definitions

probability density function

参数为 α 1 , . . . α k > 0 \alpha_1,... \alpha_k>0 α1,...αk>0 K ≥ 2 K\ge2 K2阶的狄利克雷分布具有关于欧几里得空间 R k − 1 R^{k-1} Rk1上的勒贝格测度的概率密度函数:
f ( x 1 , . . . , x k ; α 1 , . . . , α k ) = 1 B ( α ) ∏ i = 1 K x i α i − 1 ∑ i K x i = 1 , x i ∈ [ 0 , 1 ] f o r   a l l   i ∈ 1 , . . , K 归一化常数是多变量 B e t a 函数, B ( α ) = ∏ i = 1 k Γ ( α i ) Γ ( ∑ i K α i ) ,   α = ( α 1 , . . . , α k ) f(x_1,...,x_k;\alpha_1,...,\alpha_k) = \frac{1}{\Beta(\alpha)}\prod_{i=1}^{K}x_{i}^{\alpha_i-1}\\ \sum_{i}^{K}x_i =1,x_i \in [0,1] for \ all\ i\in {1,..,K}\\ 归一化常数是多变量 Beta 函数, \Beta(\alpha)= \frac{\prod_{i=1}^{k}\Gamma(\alpha_i)}{\Gamma(\sum_{i}^{K}\alpha_i)},\ \alpha = (\alpha_1,...,\alpha_k) f(x1,...,xk;α1,...,αk)=B(α)1i=1Kxiαi1iKxi=1,xi[0,1]for all i1,..,K归一化常数是多变量Beta函数,B(α)=Γ(iKαi)i=1kΓ(αi), α=(α1,...,αk)

性质(Properties)

均值和方差

X = ( x 1 , . . . , x k ) ∼ D i r ( α ) X = (x_1,...,x_k) \sim Dir(\alpha) X=(x1,...,xk)Dir(α) ,记 α 0 = ∑ i = 1 K α i \alpha_0= \sum_{i=1}^{K}\alpha_i α0=i=1Kαi
则均值 E ( x i ) = α i α 0 E(x_i)=\frac{\alpha_i}{\alpha_0} E(xi)=α0αi,

方差 V a r ( x i ) = α i ( α 0 − α i ) α 0 2 ( α 0 + 1 ) Var(x_i)=\frac{\alpha_i(\alpha_0-\alpha_i)}{\alpha_0^2(\alpha_0+1)} Var(xi)=α02(α0+1)αi(α0αi)

边际分布 (Marginal distributions)

狄利克雷分布的边际分布是Beta分布
x i ∼ B ( α i , α 0 − α i ) x_i \sim \Beta(\alpha_i,\alpha_0-\alpha_i) xiB(αi,α0αi)

共轭与分类分布或多项分布(conjugate to categorical or multinomial)

狄利克雷分布是分类分布和多项分布的共轭先验分布。这意味着如果数据点具有分类分布或者多项式分布,并且分布参数(生成数据点的概率向量)的先验分布是狄利克雷分布,则参数的后验分布也是狄利克雷分布。从直觉上来理解,在这种情况下,在没有获得观测数据点时,我们对参数的了解是此参数服从狄利克雷分布(参数的先验分布),然后我们根据获得的数据点来更新我们对参数的认知,并最终得到与旧分布相同的新分布(参数的后验分布)。用数学模型表示就是:
α = ( α 1 , . . . , α K ) p ∣ α = ( p 1 , . . . , p K ) ∼ D i r ( K , α ) ( 先验分布) X ∣ p = ( x 1 , . . . , x K ) ∼ C a t ( K , p ) t h e n   t h e   f o l l o w i n g   h o l d s : c = ( c 1 , . . . , c K ) = 分类 i 出现的次数 p ∣ X , α ∼ D i r ( K , c + α ) = D i r ( K , c 1 + α 1 , . . . , c k + α K ) (后验分布) \begin{aligned} \alpha &= (\alpha_1,...,\alpha_K)\\ p|\alpha &= (p_1,...,p_K) \sim Dir(K,\alpha) (先验分布)\\ X|p &= (x_1,...,x_K) \sim Cat(K,p)\\ then \ the \ following\ holds:\\ c &= (c_1,...,c_K) = 分类i出现的次数\\ p|X,\alpha &\sim Dir(K,c+\alpha) = Dir(K,c_1+\alpha_1,...,c_k+\alpha_K)(后验分布) \end{aligned} αpαXpthen the following holds:cpX,α=(α1,...,αK)=(p1,...,pK)Dir(K,α)(先验分布)=(x1,...,xK)Cat(K,p)=(c1,...,cK)=分类i出现的次数Dir(K,c+α)=Dir(K,c1+α1,...,ck+αK)(后验分布)
更多性质请参考:
https://en.wikipedia.org/wiki/Dirichlet_distribution

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
答案: Dirichlet Process(狄利克雷过程)是一种常用于非参数模型的随机过程。它是一个定义分布上的分布,也就是说每一个Dirichlet过程的样本都是一个分布。从Dirichlet过程中抽样的分布是离散的,但是不能用有限个参数表示这样的过程,因为在每个点(无穷维)都可以定义采样点,因此这是一个非参数的模型。狄利克雷过程是变参数学习中非常流行的一个理论,很多工作都是基于这个理论来进行的,比如HDP(hierarchical dirichlet process)。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [狄利克雷过程(dirichlet process )和分布](https://blog.csdn.net/chinaliping/article/details/9232829)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [undefined](undefined)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Dirichlet Process(狄利克雷过程)](https://blog.csdn.net/qq_45377129/article/details/128473572)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值