文章链接:2106.09876v1.pdf (arxiv.org)
摘要:动态图的异常检测由于其在社交网络、电子商务和网络安全中的广泛应用而引起越来越多的关注。最近基于深度学习的方法已经显示更优异的结果。然而,它们未能解决动态图中异常检测的两个核心挑战:缺乏对无属性节点的信息编码以及难以从耦合的时空动态图中学习判别知识。为了克服这些挑战,在本文中,我们提出了一种基于Transform的动态图异常检测框架(TADDY)。我们的框架构建了一个综合的节点编码方法,以更好地代表每个节点的结构和时间的信息在时间序列图中。同时,TADDY通过动态图Transformer模型从具有耦合时空模式的动态图中捕获信息表示。大量的实验结果表明,我们提出的TADDY框架优于SOTA。
模型介绍
TADDY由四个组件组成,即基于边缘的子结构采样,时空节点编码,动态图Transformer和异常检测器。该框架以端到端的方式进行训练。首先,为了捕获每个目标边缘的时空上下文,我们执行基于边缘的子结构采样以获取多个时间戳中的目标节点和上下文节点。然后,时空节点编码生成节点编码作为Transformer模型的输入。每个节点的空间和时间信息都被集成到固定长度编码中。然后,动态图Transformer提取边的时空信息。最后,在判别异常检测器中,我们执行负采样以生成伪负边缘,并且采用由二进制交叉熵损失训练的边缘评分模块来计算输出异常分数。
Edge-based Substructure Sampling
异常经常发生在图的局部子结构中,这表明我们应该将我们的感受野放大到合适的局部尺度。而不是工作在一个完整的动态图,我们首先采样子结构作为我们的异常检测框架的数据元素。由于我们专注于检测异常边缘,因此我们执行基于边缘的采样:动态图中的每条边被视为采样子结构的中心,并被表示为目标边。对于给定的目标边,我们将源节点和到达节点表示为目标节点。目标节点的相邻节点称为上下文节点。
借用图扩散技术来为每个目标边缘采样固定大小和重要性感知的上下文节点集。通过图扩散,获得图结构的全局视图,然后我们可以量化每个节点对于给定目标节点/边的重要性。形式上,给定静态图