Lequan Yu
《Difficulty-aware Meta-learning for Rare Disease Diagnosis》
摘要
这篇文章提出元学习方法解决罕见疾病分类问题。使用 ISIC 2018 skin lesion 分类数据集验证模型,每个类别仅展示5个样本训练,该模型可以快速的在未见过的类别上达到 83.3% 的分类准确率。
- 通过普通疾病的数据训练和构造元学习模型
- 调整模型适应罕见病分类
他们提出了一个有困难意识的元学习模型,可以在元优化期间动态监控学习任务的重要性。
数据集
ISIC 2018 Skin Lesion Analysis Towards Melanoma Detection Dataset (ISIC 2018 面向黑色素瘤检测的皮肤病灶分析数据集),包含7种皮肤疾病的一共 10,015 皮肤病灶图片。其中良性角化病 1099 张,黑色素瘤 1113 张,黑素细胞痣 6705 张,基底细胞癌 514 张,皮肤纤维瘤 115 张,血管病变 142 张,光化性角化病 327 张。
方法论
该论文提出的模型种训练数据与测试数据是完全不同的类别
本文元学习算法
Require: D t r D_{tr} Dtr:元训练数据, α \alpha α:元学习率, γ \gamma γ:内部自适应学习率
- 随机初始化网络权重 ϕ \phi ϕ
- while 不收敛 do
- 来自 D t r D_{tr} Dtr 的样本批量任务
- for 批量任务 T i \mathcal{T}_i Ti do
- for 适应步骤 do
- 使用 L T i ( f ϕ i ( x j ) ) = − ∑ x j , y j ∼ T i y j l o g ( f ϕ i ( x j ) ) + ( 1 − y j ) l o g ( 1 − f ϕ i ( x j ) ) \mathfrak{L}_{\mathcal{T}_i}(f_{\phi_i}(x_j))=-\sum_{x_j,y_j\sim{\mathcal{T}_i}}y_jlog(f_{\phi_i}(x_j))+(1-y_j)log(1-f_{\phi_i}(x_j)) LT