目录
1、Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset[1]
2、Underwater Image Enhancement by Wavelength Compensation and Dehazing[2]
3、Wavelength-based Attributed Deep Neural Network for Underwater Image Restoration[3]
不平衡衰减
水下光的衰减是不稳定的,会随着地理位置、季节和气候等相关事件的变化而变化。
在清晰开阔的水域,最长波长的可见光首先被吸收,呈现在眼中就是蓝色的。
在近岸水域,海水中会比开阔水域包含更多的悬浮颗粒,这些悬浮颗粒会散射光线,使沿海水域看起来没有开阔水域清澈。而且,对最短波长的吸收更强,因此绿色波长到达的位置比其他波长更深。
Jerlov基于水的透明度提出了一种常用的海水分类方案[4]。Jerlov把水域类型分为 10种,其中Ⅰ、IA、IB、Ⅱ和Ⅲ用于开阔海域,1、3、5、7、9 用于沿海水域。
类型Ⅰ是最清澈的开阔水域,类型Ⅲ是最浑浊的。同样,近海水域中,1是最清澈的,9是最浑浊的。
图1,描述了衰减系数与波长的相关性
普遍想法是红色比蓝/绿色衰减的更快,但该想法只适用于海水。
图2、红绿蓝三通道相机的光谱灵敏度[5]
红绿蓝三通道相机的峰值灵敏度分别为波长600nm、525nm和475nm。
相关文献
1、Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset[1]
https://arxiv.org/pdf/1811.01343.pdf
由于光在水中传播时的不平衡衰减,导致水下图像有颜色失真和对比度的问题。陆地图像的光谱衰减程度被认为是均匀的,而水下的衰减随波长而变化。
衰减依赖于水体本身以及场景的3D结构,这些让颜色复原变得困难。