视频人体行为检测

理论

视频检测通常处理思路

思路应用场景原理缺点
视频行为检测行为识别通过3D卷积核实现,结合空间语义信息以及运动信息识别人体行为
人体姿态识别用于检测一个人是否摔倒或疾病,或用于健身、体育和舞蹈等的自动教学基于关键点检测,联合时序信息判断人的行为当人体被遮挡时会产生失真现象,复杂场景下鲁棒性不高
异常行为检测视频场景下的异常行为检测技术是智能监控系统的核心技术基于之前的正常行为预测下一帧,预测的下一帧与原视频对比,判断是否为异常行为

视频行为检测综述

  • 行为识别:识别短视频中的动作——what
  • 时序动作检测:在长视频中定位特定动作出现的时间段——what+when
  • 时空动作检测:识别并定位视频中出现的人和动作——what+when+where

视频检测的痛点:

  • 如何表示视频中的动作
  • 如何高效处理大量视频数据
  • 如何降低视频数据的标注成本

在这里插入图片描述

slowfast–2019ICCV

作者创作思路来源

SlowFast是Facebook在2019年ICCV的一篇视频识别论文,受到灵长类动物的视网膜神经细胞种类的启发(大约80%的细胞(P-cells)以低频运作,可以识别细节信息;而大约20%的细胞(M-cells)则以高频运作,对时间的变化敏感)。作者提出了一种快慢网络SlowFast架构,来实现两个分支分别对时间与空间维度进行处理分析

结构

SlowFast算法整体由两个卷积分支组成:

  • Slow分支:较少的帧数以及较大的通道数学习空间语义信息。
  • Fast分支:较大的帧数以及较少的通道数学习运动信息
数据集特点

.avi文件 需要每隔几帧采集成一幅图像.jpg文件

视频长短不一致

模型效果

在这里插入图片描述

mmaction2使用说明

ubantu18.04
python == 3.8
torch == 1.8.0
cuda == 11.11

1、下载 数据集 和 开源框架mmaction2

从github下载mmaction2-init-master github:https://github.com/open-mmlab/mmaction2

下载UCF101(行为识别)数据集中的 Data Set、Action Recognition https://www.crcv.ucf.edu/research/data-sets/ucf101/

UCF101是从YouTube收集的具有101个操作类别的逼真动作视频的动作识别

2、安装开源框架

cd mkdir mmaction2
cd mmaction2
unzip mmaction2-master.zip
cd mmaction2-master
pip install -r requirements/build.txt
python setup.py develop
pip install decord -i https://pypi.douban.com/simple

https://github.com/jfzhang95/pytorch-video-recognition

人体姿态识别

基于图卷积

人体姿态识别OpenPose源码编译 - 迷途小书童的Note迷途小书童的Note (xugaoxiang.com)

在这里插入图片描述

视频异常行为检测

  • 无监督学习:基于之前的正常行为预测下一帧,预测的下一帧与原视频对比,判断是否为异常行为
  • 有监督学习:扩充异常样本

应用场景

监控安保暴力行为检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非零因子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值