第二周--第P2周:彩色图片识别

本文为🔗365天深度学习训练营内部限免文章
参考本文所写记录性文章,请在文章开头注明以下内容,复制粘贴即可

该篇文章通过构建简单的cnn模型,实现彩色图片的多分类问题。

一、准备工作

1.调用基本的包,设置gpu

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

2.导入数据

利用dataset内置的CIFAR10数据集,划分好训练集和测试集。

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
Files already downloaded and verified
Files already downloaded and verified

直接调用函数datasets下载数据速度太慢了,可以直接挂t,直接把数据集下载到相应的路径。 

3. 加载数据

调用torch.utils.data.DataLoader,并设置好batch_size

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

对于训练数据,shuffle=True。对于测试数据,不需要打乱数据。

# 取一个批次查看数据格式
imgs, labels = next(iter(train_dl))
imgs.shape

数据的shape为:[batch_size, channel, height, weight]
其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。 

torch.Size([32, 3, 32, 32])

因为是彩色图片,所以通道数是3。 

4.数据可视化

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(30, 10)) 
for i, imgs in enumerate(imgs[:20]):
 
    ##讲imgs转成numpy数组,并改变imgs的维度数据
    ##因为matplotlib中需要将其转换为[height,width,channels]的
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

 

取一个批次的图片进行可视化,因为matplotlib只能读取numpy格式的数据,并且读取数据的为[height,width,channels],给先将imgs转换为numpy数据并且利用transpose调换维度位置。

二、构建简单的CNN模型

import torch.nn.functional as F

num_classes = 10 #图片的类别数

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        # 特征提取网络
        self.conv1 = nn.Conv2d(3,64,kernel_size=3)  #第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)    #设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64,64,kernel_size=3) #第二层卷积层,卷积核大小为3*3
        self.pool2 = nn.MaxPool2d(kernel_size=2)    
        self.conv3 = nn.Conv2d(64,128,kernel_size=3)#第三层卷积层,卷积核大小为3*3
        self.pool3 = nn.MaxPool2d(kernel_size=2)    #池化层,池化核大小2*2
        
        # 分类网络
        self.fc1 = nn.Linear(512,256)
        self.fc2 = nn.Linear(256,num_classes)
        
        #前向传播
        def forward(self, x):
            x = self.pool1(F.relu(self.conv1(x)))
            x = self.pool2(F.relu(self.conv2(x)))
            x = self.pool3(F.relu(self.conv3(x)))
            
            x = torch.flatten(x, start_dim=1)
            
            x = F.relu(self.fc1(x))
            x = self.fc2(x)
            
            return x
            
            

这里构建了三层卷积-池化层

nn.Linear(512,256):这是一个全连接层。其中,512 是输入特征的数量,256 是输出特征的数量。这些特征是由前面的卷积层和池化层提取出来的。最后一个池化层的输出大小为 128×2×2,在传入全连接层之前,需要将其展平成一个一维向量,长度为 128×2×2=512。

x = self.fc2(x):这是第二个全连接层。它对第一个全连接层的输出进行线性变换,得到最终的输出。在分类任务中,这个输出通常对应于各个类别的得分或概率。

先进行卷积操作(self.conv1(x)),然后应用ReLU激活函数(F.relu()),最后进行池化操作(self.pool1())。进行了三层卷积和池化后,得到的是一个三维的特征图。然后,torch.flatten(x, start_dim=1) 这行代码将这个三维的特征图展平(拉直)成一个一维的向量,以便可以输入到全连接层。

x = F.relu(self.fc1(x)):这是第一个全连接层。self.fc1(x) 表示对输入数据 x 进行线性变换(即矩阵乘法加偏置),然后 F.relu() 是激活函数,用于增加网络的非线性。

x = self.fc2(x):这是第二个全连接层。它对第一个全连接层的输出进行线性变换,得到最终的输出。这个输出对应各个类别的得分或概率。

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================

三、训练模型

1.设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

torch.optim.SGD是pytorch中实现随机梯度下降的优化算法。在这个代码中,model.parameters() 是你想要优化的模型参数,lr=learn_rate 是学习率,它决定了参数更新的步长。CrossEntropyLoss 是 PyTorch 中的一个损失函数,主要用于分类问题。它计算的是模型的交叉熵。

2.训练模型

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

 optimizer.zero_grad():这行代码将模型参数的梯度清零。在PyTorch中,梯度是累积的,所以在每次反向传播之前,我们需要清零梯度。 loss.backward():通过反向传播算法计算了损失对每个参数的梯度。 optimizer.step():根据计算出的梯度更新了模型。

3.测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。

4.正式训练

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:11.3%, Train_loss:2.298, Test_acc:12.8%,Test_loss:2.279
Epoch: 2, Train_acc:21.2%, Train_loss:2.109, Test_acc:24.7%,Test_loss:1.984
Epoch: 3, Train_acc:30.0%, Train_loss:1.901, Test_acc:36.7%,Test_loss:1.751
Epoch: 4, Train_acc:38.3%, Train_loss:1.691, Test_acc:42.8%,Test_loss:1.595
Epoch: 5, Train_acc:43.4%, Train_loss:1.559, Test_acc:45.3%,Test_loss:1.516
Epoch: 6, Train_acc:47.0%, Train_loss:1.467, Test_acc:48.0%,Test_loss:1.437
Epoch: 7, Train_acc:50.5%, Train_loss:1.383, Test_acc:51.2%,Test_loss:1.367
Epoch: 8, Train_acc:53.3%, Train_loss:1.307, Test_acc:53.4%,Test_loss:1.290
Epoch: 9, Train_acc:55.9%, Train_loss:1.241, Test_acc:54.0%,Test_loss:1.282
Epoch:10, Train_acc:58.2%, Train_loss:1.181, Test_acc:56.6%,Test_loss:1.255
Done

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

五、问题总结

训练精度和准确率都不高,该怎么提高模型精度呢? 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值