with torch.no_grad() 详解

本文详细解析了PyTorch中的torch.no_grad()功能,说明如何使用这一上下文管理器或装饰器来避免在计算过程中追踪梯度,这对于优化计算资源和提高效率至关重要。同时介绍了torch.set_grad_enabled()作为另一种不计算梯度的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.no_grad() 是一个上下文管理器,被该语句 wrap 起来的部分将不会track 梯度。

例如:

a = torch.tensor([1.1], requires_grad=True)
b = a * 2

打印b可看到其 grad_fn 为 mulbackward 表示是做的乘法。

b
Out[63]: tensor([2.2000], grad_fn=<MulBackward0>)
b.add_(2)
Out[64]: tensor([4.2000], grad_fn=<AddBackward0>)

可以看到不被wrap的情况下,b.grad_fn 为 addbackward 表示这个add 操作被track了

with torch.no_grad():
    b.mul_(2)

在被包裹的情况下可以看到 b.grad_fn 还是为 add,mul 操作没有被 track. 但是注意,乘法操作是被执行了的。(4.2 -> 8.4)

b
Out[66]: tensor([8.4000], grad_fn=<AddBackward0>)

所以如果有不想被track的计算部分可以通过这么一个上下文管理器包裹起来。这样可以执行计算,但该计算不会在反向传播中被记录。

同时 torch.no_grad() 还可以作为一个装饰器。
比如在网络测试的函数前加上

@torch.no_grad()
def eval():
	...

扩展:
同样还可以用 torch.set_grad_enabled()来实现不计算梯度。
例如:

def eval():
	torch.set_grad_enabled(False)
	...	# your test code
	torch.set_grad_enabled(True)
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值