确定神经网络的层数和隐藏层的神经元数量

确定神经网络的层数和隐藏层神经元数量至关重要。简单的数据集可能仅需一两层隐藏层,复杂数据集可能需要更多。隐藏层层数增加理论上增强拟合能力,但可能导致过拟合和训练难度加大。隐藏层神经元数量过多或过少都可能导致欠拟合或过拟合。通常,隐藏层神经元数量在输入层和输出层大小之间,建议通过实验找到最佳值,同时结合正则化等技术防止过拟合。
摘要由CSDN通过智能技术生成

转载于知乎:如何确定神经网络的层数和隐藏层神经元数量

确定神经网络的层数和隐藏层的神经元数量

反向传播神经网络主要由输入层、隐藏层和输出层组成,输入和输出层的节点数是固定的,对于回归还是分类任务,选择合适的层数以及隐藏层节点数,很大程度上会影响神经网咯的性能。
神经网络是什么?
在这里插入图片描述
输入层与输出层的节点数量很容易得到,输入层的神经元数量等于待处理数据中输入变量的数量,输出层的神经元数量等于与每个输入关联的数量,真正的困难之处在于确定合适的隐藏层和神经元的数量。

隐藏层的层数

在神经网络中,当且仅当数据非线性分离时需要隐藏层。对于一般简单的数据集,一两层隐藏层就够了,对于涉及到时间序列和计算机视觉的复杂数据集,需要额外增加层数。单层神经网络只能用于线性分离函数(分类问题中两个类可以用一条直线整齐地分开)。多个隐藏层可以用于拟合非线性函数。隐藏层的层数与神经网络的效果,可以概括为:
在这里插入图片描述
没有隐藏层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值