转载于知乎:如何确定神经网络的层数和隐藏层神经元数量
确定神经网络的层数和隐藏层的神经元数量
反向传播神经网络主要由输入层、隐藏层和输出层组成,输入和输出层的节点数是固定的,对于回归还是分类任务,选择合适的层数以及隐藏层节点数,很大程度上会影响神经网咯的性能。
神经网络是什么?
输入层与输出层的节点数量很容易得到,输入层的神经元数量等于待处理数据中输入变量的数量,输出层的神经元数量等于与每个输入关联的数量,真正的困难之处在于确定合适的隐藏层和神经元的数量。
隐藏层的层数
在神经网络中,当且仅当数据非线性分离时需要隐藏层。对于一般简单的数据集,一两层隐藏层就够了,对于涉及到时间序列和计算机视觉的复杂数据集,需要额外增加层数。单层神经网络只能用于线性分离函数(分类问题中两个类可以用一条直线整齐地分开)。多个隐藏层可以用于拟合非线性函数。隐藏层的层数与神经网络的效果,可以概括为:
没有隐藏层