不定积分——类似1/(1+e^x)的积分

本文展示了如何通过代数技巧计算两个积分:一是1/(1+e^x)从0到1的积分,利用指数变换简化;二是sin²x/(1+e^x)从-π到π的积分,通过拆分区间和三角恒等式求解。关键步骤包括化简表达式和使用基本积分公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. ∫ 0 1 1 1 + e x d x \int_{0}^{1}\frac{1}{1+e^x}{\mathrm d}x 011+ex1dx
解:
由于: 1 1 + e x = e − x e − x + 1 \LARGE\frac{1}{1+e^x}=\frac{e^{-x}}{e^{-x}+1} 1+ex1=ex+1ex
故:
∫ 0 1 1 1 + e x d x = ∫ 0 1 e − x e − x + 1 d x = − ∫ 0 1 d ( e − x + 1 ) e − x + 1 = − ln ⁡ ( e − x + 1 ) ∣ 0 1 = ln ⁡ 2 e e + 1 \int_{0}^{1}\frac{1}{1+e^x}{\mathrm d}x=\int_{0}^{1}\frac{e^{-x}}{e^{-x}+1}{\mathrm d}x=-\int_{0}^{1}\frac{{\mathrm d}(e^{-x}+1)}{e^{-x}+1}=-\ln(e^{-x}+1)\bigg|_{0}^{1}=\ln\frac{2e}{e+1} 011+ex1dx=01ex+1exdx=01ex+1d(ex+1)=ln(ex+1)01=lne+12e
2. ∫ − π π sin ⁡ 2 x 1 + e x d x \int_{-\pi}^{\pi}\frac{\sin ^2x}{1+e^x}{\mathrm d}x ππ1+exsin2xdx
解:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值