1.
∫
0
1
1
1
+
e
x
d
x
\int_{0}^{1}\frac{1}{1+e^x}{\mathrm d}x
∫011+ex1dx
解:
由于:
1
1
+
e
x
=
e
−
x
e
−
x
+
1
\LARGE\frac{1}{1+e^x}=\frac{e^{-x}}{e^{-x}+1}
1+ex1=e−x+1e−x
故:
∫
0
1
1
1
+
e
x
d
x
=
∫
0
1
e
−
x
e
−
x
+
1
d
x
=
−
∫
0
1
d
(
e
−
x
+
1
)
e
−
x
+
1
=
−
ln
(
e
−
x
+
1
)
∣
0
1
=
ln
2
e
e
+
1
\int_{0}^{1}\frac{1}{1+e^x}{\mathrm d}x=\int_{0}^{1}\frac{e^{-x}}{e^{-x}+1}{\mathrm d}x=-\int_{0}^{1}\frac{{\mathrm d}(e^{-x}+1)}{e^{-x}+1}=-\ln(e^{-x}+1)\bigg|_{0}^{1}=\ln\frac{2e}{e+1}
∫011+ex1dx=∫01e−x+1e−xdx=−∫01e−x+1d(e−x+1)=−ln(e−x+1)∣∣∣∣01=lne+12e
2.
∫
−
π
π
sin
2
x
1
+
e
x
d
x
\int_{-\pi}^{\pi}\frac{\sin ^2x}{1+e^x}{\mathrm d}x
∫−ππ1+exsin2xdx
解:
不定积分——类似1/(1+e^x)的积分
于 2022-02-10 23:15:53 首次发布