【 [mmdetection] 如何在训练中断后,接着上次训练?】

[mmdetection] 如何在训练中断后,接着上次训练?

最近由于不知名原因,在用 faster rcnn 训练一个大型数据集的时候,在epoch= 20 的时候中断训练了.采用以下方式继续上次训练.
打开 train.py,如图:
train.py
也就是说,训练时,最后加一个–resume from 参数,然后后面跟上次训练生成的最后一个权重文件(.pth)就可以了.
因此,在命令行输入以下语句进行训练即可以完全相同的模型配置继续上次的训练啦::

 python tools/train.py configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py --work-dir work_dirs/xxx --resume-from work_dirs/yyy/latest.pth

运行之后,就会发现直接从 epoch=21 开始输出训练结果啦! happy!
dog

这样就可以避免重新训练浪费时间啦! 如果对你有用的话,就点个赞吧! 感恩的心!

要继续训练mmdetection模型,你需要按照以下步骤进行操作: 1. 首先,确保你已经完成了mmdetection的安装。你可以按照\[3\]中提供的指南进行安装。 2. 打开train.py文件,添加"--resume-from"参数,并在后面跟上上次训练生成的最后一个权重文件的路径。这个参数告诉模型从上次训练的断点处继续训练。例如,你可以使用以下命令行语句进行训练: ``` python tools/train.py configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py --work-dir work_dirs/xxx --resume-from work_dirs/yyy/latest.pth ``` 其中,"configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py"是训练模型的配置文件路径,"work_dirs/xxx"是训练结果的保存路径,"work_dirs/yyy/latest.pth"是上次训练生成的最后一个权重文件的路径。请根据你的实际情况进行相应的修改。 3. 运行上述命令行语句,即可开始从上次训练的断点处继续训练模型。 请注意,以上步骤是基于mmdetection的使用方法,具体的操作可能会因版本和配置文件的不同而有所差异。建议你参考mmdetection的官方文档或者相关教程,以确保正确地继续训练模型。 #### 引用[.reference_title] - *1* *3* [mmdetection从配置到训练](https://blog.csdn.net/qq_52302919/article/details/127619266)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [【 [mmdetection] 如何在训练中断后,接着上次训练?】](https://blog.csdn.net/weixin_46600060/article/details/123798236)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值