2021-04-24

本文详细介绍了如何在没有网络连接的CentOS服务器上搭建PyTorch1.6和CUDA10.1的深度学习环境。首先通过Anaconda安装Python3.8,然后创建离线虚拟环境。接着,下载并离线安装CUDA10.1和cuDNN,最后通过conda安装PyTorch、torchvision和cudatoolkit。验证环境成功后,可以进行深度学习研究。
摘要由CSDN通过智能技术生成

Linux(Centos)服务器离线环境下搭建本地pytorch1.6及cuda10.1深度学习环境

前言

学习深度学习框架TensorFlow或者pytorch,第一头疼的是环境搭建。如果是在本地搭建其实不难,前提是你拥有一定算力的NVIDIA显卡。Emmm,最好是有自己的设备,但现在显卡死贵,不过有服务器用也还不错。我想用的服务器因为不能联网,所以只能选择离线安装。网上很多教程是root权限下的安装,服务器我是非root权限,且服务器上已安装好了显卡驱动。非root用户无法直接查看显卡信息,使用python代码提交到后台可以查看。

可以查看到:驱动版本为418.39,可以安装的CUDA的版本为10.1

一、Anaconda安装

因为我在GitHub上学习的开源代码环境配置是要python3.6或者3.7的,所以我先查看python3.6或者3.7对应有哪些anaconda版本,最后选择了Anaconda3-2020.11-Linux-x86_64,对应Python版本为3.8。因为anaconda官网服务器在国外,下载速度慢的离谱,跟某度网盘一样,如果能科学上网,那就继续选择官网下载。我这里选择清华源下载anaconda:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/。下载anaconda的.sh安装包,然后上传我的服务器家目录下。

(1)Xshell终端:

bash Anaconda3-2020.11-Linux-x86_64.sh

然后一直enter浏览完使用协议之后,输入yes同意协议,再之后询问是否加入配置文件,输入yes。之后会出现是否安装VScode,我选择了no。

然后等待它安装各种包,安装时间好像可能有点久,耐心等待。

看到了thank you字眼说明anaconda安装好了。

(2)配置环境变量

如果刚刚在询问要不要添加环境变量到/data/users/…的时候,输入的no,进行如下操作手动添加环境变量

Xshell终端输入:

vim ~/.bashrc

再输入i进入编辑状态,在文件末尾添加:

PATH=/data/users/…/anaconda3/bin:$PATH

完毕之后,按ESC,输入:wq,完成保存退出vim。

更新配置文件输入:source ~/.bashrc

最后可以输入python查看anaconda是否安装成功。

(3)conda离线新建自己的虚拟环境:pytorch-gpu-1.6

终端输入:

conda create -n pytorch-gpu-1.6 --offline

二、Pytorch安装

(1)确定服务器显卡驱动为418.39

CUDA下载链接https://developer.nvidia.com/cuda-toolkit-archive,最好是能科学上网一下,不然下载很慢。选择对应的CUDA,我这里选择下载cuda_10.0.130_410.48_linux.run

根据cuda发行时间,选择对应版本的cuDNN,然后下载cudnn-10.0-linux-x64-v7.4.1.5.tgz。下载链接:https://developer.nvidia.com/rdp/cudnn-archive,有点讨厌的是需要注册账号才能下载,所以,为了论文冲去注册吧。

(2)上传下载的CUDA和cuDNN安装包到服务器

CUDA安装:

安装CUDA在Xshell终端输入:

chmod +x cuda_10.0.130_410.48_linux.run
./cuda_10.0.130_410.48_linux.run

然后一直回车,最后按下图设置完毕就行。

看到summary字眼。然后添加PATH:打开/.bashrc文件:vim ~/.bashrc。并在文件最后加入:

# added by cuda 10.0 installer

export PATH="$HOME /data/users/…/cuda-10.0/bin:$PATH"

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$HOME /data/users/…/cuda-10.0/lib64/"

最后退出配置文件再输入:source ~/.bashrc

查看CUDA安装是否成功:nvcc -V

cuDNN安装:

终端输入:

tar -xzvf cudnn-10.0-linux-x64-v7.4.1.5.tgz

这里要注意,cudnn这个命令不是安装,而是解压,解压完了以后要拷贝到相应的cuda目录中去,这个参考其他博客有细讲。

cp /data/users/…/cuda/include/cudnn.h /data/users/…/cuda-10.0/include/
cp /data/users/…/cuda/lib64/libcudnn* /data/users/…/cuda-10.0/lib64
chmod a+r /data/users/…/cuda/include/cudnn.h /data/users/…/cuda-10.0/lib64/libcudnn*

 查看cudnn是否安装成功:

cat /data/users/…/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

 最后下载在清华源上下载pytorch、torchvision、cudatoolkit安装包:

安装pytorch的命令:

conda install --offline pytorch-1.6.0-py3.8_cuda10.1.243_cudnn7.6.3_0.tar.bz2

安装torchvision的命令:

conda install --offline torchvision-0.7.0-py38_cu101.tar.bz2

安装cudatoolkit的命令:

conda install --offline cudatoolkit-10.1.243-h6bb024c_0.tar.bz2

三、验证

终端输入:

python
import torch
print(torch.__version__)
print(torch.version.cuda)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值