凸集:
几何上:集合S中的任意两点之间的连线段仍属于集合S,称S为凸集
空集是凸集,n维空间也是凸集。
超平面
实际上,超平面是纯粹的数学概念,不是物理概念,它是平面中的直线、空间中的平面的推广,只有当维度大于3,才称为“超”平面。
参考文章:https://blog.csdn.net/baidu_38172402/article/details/83583969
(1)任意个凸集的交集是凸集(并集不一定)
凸集关于交集运算封闭
(2)凸集关于加法,减法,数乘运算封闭
凸组合
(3)
凸包
集合S的凸包是包含S的最小凸集
凸锥
参考资料:https://www.cnblogs.com/saysei/p/10124314.html
凸锥分离定理
凸集分离定理是凸集理论的最基本的定理,它是指在很弱的条件下,两个不相交的凸集总可用超平面分离
法克斯定理
Gordan定理
多胞形
多胞形K定义:
极点:
定理:若多胞形K非空,那它必有极点
极点判定定理
多胞形的极点个数有限
多面体表示定理
方向和极方向
多胞形表示定理
凸函数
凹函数与严格凹函数
一阶判定定理
凸规划
迭代公式
算法结构
收敛性
二次终止性